##### 树与图的存储 树是一种特殊的图,与图的存储方式相同。 $对于无向图中的边ab,存储两条有向边a->b, b->a。$ 因此我们可以只考虑有向图的存储。 (1) 邻接矩阵:$g[a][b] 存储边a->b$ (2) 邻接表: ```cpp // 对于每个点k,开一个单链表,存储k所有可以走到的点。h[k]存储这个单链表的头结点 int h[N], e[N], ne[N], idx; // 添加一条边a->b void add(int a, int b) { e[idx] = b, ne[idx] = h[a], h[a] = idx ++ ; } // 初始化 idx = 0; memset(h, -1, sizeof h); ``` ------------- ##### 树与图的遍历 ###### $时间复杂度 O(n+m), n 表示点数,m表示边数$ ###### (1) 深度优先遍历 —— 模板题 AcWing 846. 树的重心 ```cpp int dfs(int u) { st[u] = true; // st[u] 表示点u已经被遍历过 for (int i = h[u]; i != -1; i = ne[i]) { int j = e[i]; if (!st[j]) dfs(j); } } ``` ###### (2) 宽度优先遍历 —— 模板题 AcWing 847. 图中点的层次 ```cpp queue q; st[1] = true; // 表示1号点已经被遍历过 q.push(1); while (q.size()) { int t = q.front(); q.pop(); for (int i = h[t]; i != -1; i = ne[i]) { int j = e[i]; if (!st[j]) { st[j] = true; // 表示点j已经被遍历过 q.push(j); } } } ``` ---------------- ##### 拓扑排序 —— 模板题 AcWing 848. 有向图的拓扑序列 ###### $时间复杂度 O(n+m), n 表示点数,m表示边数$ ```cpp bool topsort() { int hh = 0, tt = -1; // d[i] 存储点i的入度 for (int i = 1; i <= n; i ++ ) if (!d[i]) q[ ++ tt] = i; while (hh <= tt) { int t = q[hh ++ ]; for (int i = h[t]; i != -1; i = ne[i]) { int j = e[i]; if (-- d[j] == 0) q[ ++ tt] = j; } } // 如果所有点都入队了,说明存在拓扑序列;否则不存在拓扑序列。 return tt == n - 1; } ``` ----------------- ##### 朴素dijkstra算法 —— 模板题 AcWing 849. Dijkstra求最短路 I ###### $时间复杂是 O(n^2+m), n 表示点数,m表示边数$ ```cpp int g[N][N]; // 存储每条边 int dist[N]; // 存储1号点到每个点的最短距离 bool st[N]; // 存储每个点的最短路是否已经确定 // 求1号点到n号点的最短路,如果不存在则返回-1 int dijkstra() { memset(dist, 0x3f, sizeof dist); dist[1] = 0; for (int i = 0; i < n - 1; i ++ ) { int t = -1; // 在还未确定最短路的点中,寻找距离最小的点 for (int j = 1; j <= n; j ++ ) if (!st[j] && (t == -1 || dist[t] > dist[j])) t = j; // 用t更新其他点的距离 for (int j = 1; j <= n; j ++ ) dist[j] = min(dist[j], dist[t] + g[t][j]); st[t] = true; } if (dist[n] == 0x3f3f3f3f) return -1; return dist[n]; } ``` ---------------- ##### 堆优化版dijkstra —— 模板题 AcWing 850. Dijkstra求最短路 II ###### $时间复杂度 O(mlogn), n 表示点数,m表示边数$ ```cpp typedef pair PII; int n; // 点的数量 int h[N], w[N], e[N], ne[N], idx; // 邻接表存储所有边 int dist[N]; // 存储所有点到1号点的距离 bool st[N]; // 存储每个点的最短距离是否已确定 // 求1号点到n号点的最短距离,如果不存在,则返回-1 int dijkstra() { memset(dist, 0x3f, sizeof dist); dist[1] = 0; priority_queue, greater> heap; heap.push({0, 1}); // first存储距离,second存储节点编号 while (heap.size()) { auto t = heap.top(); heap.pop(); int ver = t.second, distance = t.first; if (st[ver]) continue; st[ver] = true; for (int i = h[ver]; i != -1; i = ne[i]) { int j = e[i]; if (dist[j] > distance + w[i]) { dist[j] = distance + w[i]; heap.push({dist[j], j}); } } } if (dist[n] == 0x3f3f3f3f) return -1; return dist[n]; } ``` ------------------ ##### Bellman-Ford算法 —— 模板题 AcWing 853. 有边数限制的最短路 ###### $时间复杂度 O(nm), n 表示点数,m表示边数$ 注意在模板题中需要对下面的模板稍作修改,加上备份数组,详情见模板题。 ```cpp int n, m; // n表示点数,m表示边数 int dist[N]; // dist[x]存储1到x的最短路距离 struct Edge // 边,a表示出点,b表示入点,w表示边的权重 { int a, b, w; }edges[M]; // 求1到n的最短路距离,如果无法从1走到n,则返回-1。 int bellman_ford() { memset(dist, 0x3f, sizeof dist); dist[1] = 0; // 如果第n次迭代仍然会松弛三角不等式,就说明存在一条长度是n+1的最短路径,由抽屉原理,路径中至少存在两个相同的点,说明图中存在负权回路。 for (int i = 0; i < n; i ++ ) { for (int j = 0; j < m; j ++ ) { int a = edges[j].a, b = edges[j].b, w = edges[j].w; if (dist[b] > dist[a] + w) dist[b] = dist[a] + w; } } if (dist[n] > 0x3f3f3f3f / 2) return -1; return dist[n]; } ``` ------------------- ##### spfa 算法(队列优化的Bellman-Ford算法) —— 模板题 AcWing 851. spfa求最短路 ###### $时间复杂度 平均情况下 O(m),最坏情况下 O(nm), n 表示点数,m表示边数$ ```cpp int n; // 总点数 int h[N], w[N], e[N], ne[N], idx; // 邻接表存储所有边 int dist[N]; // 存储每个点到1号点的最短距离 bool st[N]; // 存储每个点是否在队列中 // 求1号点到n号点的最短路距离,如果从1号点无法走到n号点则返回-1 int spfa() { memset(dist, 0x3f, sizeof dist); dist[1] = 0; queue q; q.push(1); st[1] = true; while (q.size()) { auto t = q.front(); q.pop(); st[t] = false; for (int i = h[t]; i != -1; i = ne[i]) { int j = e[i]; if (dist[j] > dist[t] + w[i]) { dist[j] = dist[t] + w[i]; if (!st[j]) // 如果队列中已存在j,则不需要将j重复插入 { q.push(j); st[j] = true; } } } } if (dist[n] == 0x3f3f3f3f) return -1; return dist[n]; } ``` ----------------- ##### spfa判断图中是否存在负环 —— 模板题 AcWing 852. spfa判断负环 ###### $时间复杂度是 O(nm), n 表示点数,m表示边数$ ```cpp int n; // 总点数 int h[N], w[N], e[N], ne[N], idx; // 邻接表存储所有边 int dist[N], cnt[N]; // dist[x]存储1号点到x的最短距离,cnt[x]存储1到x的最短路中经过的点数 bool st[N]; // 存储每个点是否在队列中 // 如果存在负环,则返回true,否则返回false。 bool spfa() { // 不需要初始化dist数组 // 原理:如果某条最短路径上有n个点(除了自己),那么加上自己之后一共有n+1个点,由抽屉原理一定有两个点相同,所以存在环。 queue q; for (int i = 1; i <= n; i ++ ) { q.push(i); st[i] = true; } while (q.size()) { auto t = q.front(); q.pop(); st[t] = false; for (int i = h[t]; i != -1; i = ne[i]) { int j = e[i]; if (dist[j] > dist[t] + w[i]) { dist[j] = dist[t] + w[i]; cnt[j] = cnt[t] + 1; if (cnt[j] >= n) return true; // 如果从1号点到x的最短路中包含至少n个点(不包括自己),则说明存在环 if (!st[j]) { q.push(j); st[j] = true; } } } } return false; } ``` ------------------ ##### floyd算法 —— 模板题 AcWing 854. Floyd求最短路 ###### $时间复杂度是 O(n^3), n表示点数$ ```cpp 初始化: for (int i = 1; i <= n; i ++ ) for (int j = 1; j <= n; j ++ ) if (i == j) d[i][j] = 0; else d[i][j] = INF; // 算法结束后,d[a][b]表示a到b的最短距离 void floyd() { for (int k = 1; k <= n; k ++ ) for (int i = 1; i <= n; i ++ ) for (int j = 1; j <= n; j ++ ) d[i][j] = min(d[i][j], d[i][k] + d[k][j]); } ``` ------------------- ##### 朴素版prim算法 —— 模板题 AcWing 858. Prim算法求最小生成树 ###### $时间复杂度是 O(n^2+m), n 表示点数,m表示边数$ ```cpp int n; // n表示点数 int g[N][N]; // 邻接矩阵,存储所有边 int dist[N]; // 存储其他点到当前最小生成树的距离 bool st[N]; // 存储每个点是否已经在生成树中 // 如果图不连通,则返回INF(值是0x3f3f3f3f), 否则返回最小生成树的树边权重之和 int prim() { memset(dist, 0x3f, sizeof dist); int res = 0; for (int i = 0; i < n; i ++ ) { int t = -1; for (int j = 1; j <= n; j ++ ) if (!st[j] && (t == -1 || dist[t] > dist[j])) t = j; if (i && dist[t] == INF) return INF; if (i) res += dist[t]; st[t] = true; for (int j = 1; j <= n; j ++ ) dist[j] = min(dist[j], g[t][j]); } return res; } ``` ------------------ ##### Kruskal算法 —— 模板题 AcWing 859. Kruskal算法求最小生成树 ###### $时间复杂度是 O(mlogm), n 表示点数,m表示边数$ ```cpp int n, m; // n是点数,m是边数 int p[N]; // 并查集的父节点数组 struct Edge // 存储边 { int a, b, w; bool operator< (const Edge &W)const { return w < W.w; } }edges[M]; int find(int x) // 并查集核心操作 { if (p[x] != x) p[x] = find(p[x]); return p[x]; } int kruskal() { sort(edges, edges + m); for (int i = 1; i <= n; i ++ ) p[i] = i; // 初始化并查集 int res = 0, cnt = 0; for (int i = 0; i < m; i ++ ) { int a = edges[i].a, b = edges[i].b, w = edges[i].w; a = find(a), b = find(b); if (a != b) // 如果两个连通块不连通,则将这两个连通块合并 { p[a] = b; res += w; cnt ++ ; } } if (cnt < n - 1) return INF; return res; } ``` ------------------ ##### 染色法判别二分图 —— 模板题 AcWing 860. 染色法判定二分图 ###### $时间复杂度是 O(n+m), n 表示点数,m表示边数$ ```cpp int n; // n表示点数 int h[N], e[M], ne[M], idx; // 邻接表存储图 int color[N]; // 表示每个点的颜色,-1表示未染色,0表示白色,1表示黑色 // 参数:u表示当前节点,c表示当前点的颜色 bool dfs(int u, int c) { color[u] = c; for (int i = h[u]; i != -1; i = ne[i]) { int j = e[i]; if (color[j] == -1) { if (!dfs(j, !c)) return false; } else if (color[j] == c) return false; } return true; } bool check() { memset(color, -1, sizeof color); bool flag = true; for (int i = 1; i <= n; i ++ ) if (color[i] == -1) if (!dfs(i, 0)) { flag = false; break; } return flag; } ``` ------------------- ##### 匈牙利算法 —— 模板题 AcWing 861. 二分图的最大匹配 ###### $时间复杂度是 O(nm), n 表示点数,m表示边数$ ```cpp int n1, n2; // n1表示第一个集合中的点数,n2表示第二个集合中的点数 int h[N], e[M], ne[M], idx; // 邻接表存储所有边,匈牙利算法中只会用到从第一个集合指向第二个集合的边,所以这里只用存一个方向的边 int match[N]; // 存储第二个集合中的每个点当前匹配的第一个集合中的点是哪个 bool st[N]; // 表示第二个集合中的每个点是否已经被遍历过 bool find(int x) { for (int i = h[x]; i != -1; i = ne[i]) { int j = e[i]; if (!st[j]) { st[j] = true; if (match[j] == 0 || find(match[j])) { match[j] = x; return true; } } } return false; } // 求最大匹配数,依次枚举第一个集合中的每个点能否匹配第二个集合中的点 int res = 0; for (int i = 1; i <= n1; i ++ ) { memset(st, false, sizeof st); if (find(i)) res ++ ; } ``` ------------------- > 作者:yxc > > 链接:https://www.acwing.com/blog/content/405/ > > 来源:AcWing > > 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。