314 lines
6.6 KiB
Markdown
314 lines
6.6 KiB
Markdown
|
##### 快速排序算法模板 —— 模板题 AcWing 785. 快速排序
|
|||
|
|
|||
|
```cpp
|
|||
|
void quick_sort(int q[], int l, int r)
|
|||
|
{
|
|||
|
if (l >= r) return;
|
|||
|
|
|||
|
int i = l - 1, j = r + 1, x = q[l + r >> 1];
|
|||
|
while (i < j)
|
|||
|
{
|
|||
|
do i ++ ; while (q[i] < x);
|
|||
|
do j -- ; while (q[j] > x);
|
|||
|
if (i < j) swap(q[i], q[j]);
|
|||
|
}
|
|||
|
quick_sort(q, l, j), quick_sort(q, j + 1, r);
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
------------------------
|
|||
|
|
|||
|
##### 归并排序算法模板 —— 模板题 AcWing 787. 归并排序
|
|||
|
|
|||
|
```cpp
|
|||
|
void merge_sort(int q[], int l, int r)
|
|||
|
{
|
|||
|
if (l >= r) return;
|
|||
|
|
|||
|
int mid = l + r >> 1;
|
|||
|
merge_sort(q, l, mid);
|
|||
|
merge_sort(q, mid + 1, r);
|
|||
|
|
|||
|
int k = 0, i = l, j = mid + 1;
|
|||
|
while (i <= mid && j <= r)
|
|||
|
if (q[i] <= q[j]) tmp[k ++ ] = q[i ++ ];
|
|||
|
else tmp[k ++ ] = q[j ++ ];
|
|||
|
|
|||
|
while (i <= mid) tmp[k ++ ] = q[i ++ ];
|
|||
|
while (j <= r) tmp[k ++ ] = q[j ++ ];
|
|||
|
|
|||
|
for (i = l, j = 0; i <= r; i ++, j ++ ) q[i] = tmp[j];
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
------------
|
|||
|
|
|||
|
##### 整数二分算法模板 —— 模板题 AcWing 789. 数的范围
|
|||
|
|
|||
|
```cpp
|
|||
|
bool check(int x) {/* ... */} // 检查x是否满足某种性质
|
|||
|
|
|||
|
// 区间[l, r]被划分成[l, mid]和[mid + 1, r]时使用:
|
|||
|
int bsearch_1(int l, int r)
|
|||
|
{
|
|||
|
while (l < r)
|
|||
|
{
|
|||
|
int mid = l + r >> 1;
|
|||
|
if (check(mid)) r = mid; // check()判断mid是否满足性质
|
|||
|
else l = mid + 1;
|
|||
|
}
|
|||
|
return l;
|
|||
|
}
|
|||
|
// 区间[l, r]被划分成[l, mid - 1]和[mid, r]时使用:
|
|||
|
int bsearch_2(int l, int r)
|
|||
|
{
|
|||
|
while (l < r)
|
|||
|
{
|
|||
|
int mid = l + r + 1 >> 1;
|
|||
|
if (check(mid)) l = mid;
|
|||
|
else r = mid - 1;
|
|||
|
}
|
|||
|
return l;
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
-------------------
|
|||
|
|
|||
|
##### 浮点数二分算法模板 —— 模板题 AcWing 790. 数的三次方根
|
|||
|
|
|||
|
```cpp
|
|||
|
bool check(double x) {/* ... */} // 检查x是否满足某种性质
|
|||
|
|
|||
|
double bsearch_3(double l, double r)
|
|||
|
{
|
|||
|
const double eps = 1e-6; // eps 表示精度,取决于题目对精度的要求
|
|||
|
while (r - l > eps)
|
|||
|
{
|
|||
|
double mid = (l + r) / 2;
|
|||
|
if (check(mid)) r = mid;
|
|||
|
else l = mid;
|
|||
|
}
|
|||
|
return l;
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
--------------------
|
|||
|
|
|||
|
##### 高精度加法 —— 模板题 AcWing 791. 高精度加法
|
|||
|
|
|||
|
```cpp
|
|||
|
// C = A + B, A >= 0, B >= 0
|
|||
|
vector<int> add(vector<int> &A, vector<int> &B)
|
|||
|
{
|
|||
|
if (A.size() < B.size()) return add(B, A);
|
|||
|
|
|||
|
vector<int> C;
|
|||
|
int t = 0;
|
|||
|
for (int i = 0; i < A.size(); i ++ )
|
|||
|
{
|
|||
|
t += A[i];
|
|||
|
if (i < B.size()) t += B[i];
|
|||
|
C.push_back(t % 10);
|
|||
|
t /= 10;
|
|||
|
}
|
|||
|
|
|||
|
if (t) C.push_back(t);
|
|||
|
return C;
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
--------------------
|
|||
|
|
|||
|
##### 高精度减法 —— 模板题 AcWing 792. 高精度减法
|
|||
|
|
|||
|
```cpp
|
|||
|
// C = A - B, 满足A >= B, A >= 0, B >= 0
|
|||
|
vector<int> sub(vector<int> &A, vector<int> &B)
|
|||
|
{
|
|||
|
vector<int> C;
|
|||
|
for (int i = 0, t = 0; i < A.size(); i ++ )
|
|||
|
{
|
|||
|
t = A[i] - t;
|
|||
|
if (i < B.size()) t -= B[i];
|
|||
|
C.push_back((t + 10) % 10);
|
|||
|
if (t < 0) t = 1;
|
|||
|
else t = 0;
|
|||
|
}
|
|||
|
|
|||
|
while (C.size() > 1 && C.back() == 0) C.pop_back();
|
|||
|
return C;
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
------------------
|
|||
|
|
|||
|
##### 高精度乘低精度 —— 模板题 AcWing 793. 高精度乘法
|
|||
|
|
|||
|
```cpp
|
|||
|
// C = A * b, A >= 0, b >= 0
|
|||
|
vector<int> mul(vector<int> &A, int b)
|
|||
|
{
|
|||
|
vector<int> C;
|
|||
|
|
|||
|
int t = 0;
|
|||
|
for (int i = 0; i < A.size() || t; i ++ )
|
|||
|
{
|
|||
|
if (i < A.size()) t += A[i] * b;
|
|||
|
C.push_back(t % 10);
|
|||
|
t /= 10;
|
|||
|
}
|
|||
|
|
|||
|
while (C.size() > 1 && C.back() == 0) C.pop_back();
|
|||
|
return C;
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
-----------------
|
|||
|
|
|||
|
##### 高精度除以低精度 —— 模板题 AcWing 794. 高精度除法
|
|||
|
|
|||
|
```cpp
|
|||
|
// A / b = C ... r, A >= 0, b > 0
|
|||
|
vector<int> div(vector<int> &A, int b, int &r)
|
|||
|
{
|
|||
|
vector<int> C;
|
|||
|
r = 0;
|
|||
|
for (int i = A.size() - 1; i >= 0; i -- )
|
|||
|
{
|
|||
|
r = r * 10 + A[i];
|
|||
|
C.push_back(r / b);
|
|||
|
r %= b;
|
|||
|
}
|
|||
|
reverse(C.begin(), C.end());
|
|||
|
while (C.size() > 1 && C.back() == 0) C.pop_back();
|
|||
|
return C;
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
----------------------
|
|||
|
|
|||
|
##### 一维前缀和 —— 模板题 AcWing 795. 前缀和
|
|||
|
|
|||
|
$S[i] = a[1] + a[2] + ... a[i]$
|
|||
|
|
|||
|
$a[l] + ... + a[r] = S[r] - S[l - 1]$
|
|||
|
|
|||
|
---------------------
|
|||
|
|
|||
|
##### 二维前缀和 —— 模板题 AcWing 796. 子矩阵的和
|
|||
|
|
|||
|
$S[i, j] = 第i行j列格子左上部分所有元素的和$
|
|||
|
|
|||
|
$以(x_1, y_1)为左上角,(x_2, y_2)为右下角的子矩阵的和为:$
|
|||
|
|
|||
|
```cpp
|
|||
|
S[x2, y2] - S[x1 - 1, y2] - S[x2, y1 - 1] + S[x1 - 1, y1 - 1]
|
|||
|
```
|
|||
|
|
|||
|
----------------
|
|||
|
|
|||
|
##### 一维差分 —— 模板题 AcWing 797. 差分
|
|||
|
|
|||
|
$给区间[l, r]中的每个数加上c:$
|
|||
|
|
|||
|
```cpp
|
|||
|
B[l] += c, B[r + 1] -= c
|
|||
|
```
|
|||
|
|
|||
|
----------------
|
|||
|
|
|||
|
##### 二维差分 —— 模板题 AcWing 798. 差分矩阵
|
|||
|
|
|||
|
$给以(x_1, y_1)为左上角,(x_2, y_2)为右下角的子矩阵中的所有元素加上c:$
|
|||
|
|
|||
|
```cpp
|
|||
|
S[x1, y1] += c, S[x2 + 1, y1] -= c, S[x1, y2 + 1] -= c, S[x2 + 1, y2 + 1] += c
|
|||
|
```
|
|||
|
|
|||
|
-----------------------
|
|||
|
|
|||
|
##### 位运算 —— 模板题 AcWing 801. 二进制中1的个数
|
|||
|
|
|||
|
```cpp
|
|||
|
求n的第k位数字: n >> k & 1
|
|||
|
返回n的最后一位1:lowbit(n) = n & -n
|
|||
|
```
|
|||
|
|
|||
|
----------------------
|
|||
|
|
|||
|
##### 双指针算法 —— 模板题 AcWIng 799. 最长连续不重复子序列, AcWing 800. 数组元素的目标和
|
|||
|
|
|||
|
```cpp
|
|||
|
for (int i = 0, j = 0; i < n; i ++ )
|
|||
|
{
|
|||
|
while (j < i && check(i, j)) j ++ ;
|
|||
|
|
|||
|
// 具体问题的逻辑
|
|||
|
}
|
|||
|
常见问题分类:
|
|||
|
(1) 对于一个序列,用两个指针维护一段区间
|
|||
|
(2) 对于两个序列,维护某种次序,比如归并排序中合并两个有序序列的操作
|
|||
|
```
|
|||
|
|
|||
|
-----------------------
|
|||
|
|
|||
|
##### 离散化 —— 模板题 AcWing 802. 区间和
|
|||
|
|
|||
|
```cpp
|
|||
|
vector<int> alls; // 存储所有待离散化的值
|
|||
|
sort(alls.begin(), alls.end()); // 将所有值排序
|
|||
|
alls.erase(unique(alls.begin(), alls.end()), alls.end()); // 去掉重复元素
|
|||
|
|
|||
|
// 二分求出x对应的离散化的值
|
|||
|
int find(int x) // 找到第一个大于等于x的位置
|
|||
|
{
|
|||
|
int l = 0, r = alls.size() - 1;
|
|||
|
while (l < r)
|
|||
|
{
|
|||
|
int mid = l + r >> 1;
|
|||
|
if (alls[mid] >= x) r = mid;
|
|||
|
else l = mid + 1;
|
|||
|
}
|
|||
|
return r + 1; // 映射到1, 2, ...n
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
--------------------
|
|||
|
|
|||
|
##### 区间合并 —— 模板题 AcWing 803. 区间合并
|
|||
|
|
|||
|
```cpp
|
|||
|
// 将所有存在交集的区间合并
|
|||
|
void merge(vector<PII> &segs)
|
|||
|
{
|
|||
|
vector<PII> res;
|
|||
|
|
|||
|
sort(segs.begin(), segs.end());
|
|||
|
|
|||
|
int st = -2e9, ed = -2e9;
|
|||
|
for (auto seg : segs)
|
|||
|
if (ed < seg.first)
|
|||
|
{
|
|||
|
if (st != -2e9) res.push_back({st, ed});
|
|||
|
st = seg.first, ed = seg.second;
|
|||
|
}
|
|||
|
else ed = max(ed, seg.second);
|
|||
|
|
|||
|
if (st != -2e9) res.push_back({st, ed});
|
|||
|
|
|||
|
segs = res;
|
|||
|
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
--------------
|
|||
|
|
|||
|
> 作者:yxc
|
|||
|
>
|
|||
|
> 链接:https://www.acwing.com/blog/content/277/
|
|||
|
>
|
|||
|
> 来源:AcWing
|
|||
|
>
|
|||
|
> 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
|
|||
|
|