smart-green-house/rtt-uart-nb/libraries/STM32F1xx_HAL_Driver/Inc/stm32f1xx_ll_usart.h

2570 lines
97 KiB
C

/**
******************************************************************************
* @file stm32f1xx_ll_usart.h
* @author MCD Application Team
* @brief Header file of USART LL module.
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2016 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM32F1xx_LL_USART_H
#define __STM32F1xx_LL_USART_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx.h"
/** @addtogroup STM32F1xx_LL_Driver
* @{
*/
#if defined (USART1) || defined (USART2) || defined (USART3) || defined (UART4) || defined (UART5)
/** @defgroup USART_LL USART
* @{
*/
/* Private types -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private constants ---------------------------------------------------------*/
/** @defgroup USART_LL_Private_Constants USART Private Constants
* @{
*/
/* Defines used for the bit position in the register and perform offsets*/
#define USART_POSITION_GTPR_GT USART_GTPR_GT_Pos
/**
* @}
*/
/* Private macros ------------------------------------------------------------*/
#if defined(USE_FULL_LL_DRIVER)
/** @defgroup USART_LL_Private_Macros USART Private Macros
* @{
*/
/**
* @}
*/
#endif /*USE_FULL_LL_DRIVER*/
/* Exported types ------------------------------------------------------------*/
#if defined(USE_FULL_LL_DRIVER)
/** @defgroup USART_LL_ES_INIT USART Exported Init structures
* @{
*/
/**
* @brief LL USART Init Structure definition
*/
typedef struct
{
uint32_t BaudRate; /*!< This field defines expected Usart communication baud rate.
This feature can be modified afterwards using unitary function @ref LL_USART_SetBaudRate().*/
uint32_t DataWidth; /*!< Specifies the number of data bits transmitted or received in a frame.
This parameter can be a value of @ref USART_LL_EC_DATAWIDTH.
This feature can be modified afterwards using unitary function @ref LL_USART_SetDataWidth().*/
uint32_t StopBits; /*!< Specifies the number of stop bits transmitted.
This parameter can be a value of @ref USART_LL_EC_STOPBITS.
This feature can be modified afterwards using unitary function @ref LL_USART_SetStopBitsLength().*/
uint32_t Parity; /*!< Specifies the parity mode.
This parameter can be a value of @ref USART_LL_EC_PARITY.
This feature can be modified afterwards using unitary function @ref LL_USART_SetParity().*/
uint32_t TransferDirection; /*!< Specifies whether the Receive and/or Transmit mode is enabled or disabled.
This parameter can be a value of @ref USART_LL_EC_DIRECTION.
This feature can be modified afterwards using unitary function @ref LL_USART_SetTransferDirection().*/
uint32_t HardwareFlowControl; /*!< Specifies whether the hardware flow control mode is enabled or disabled.
This parameter can be a value of @ref USART_LL_EC_HWCONTROL.
This feature can be modified afterwards using unitary function @ref LL_USART_SetHWFlowCtrl().*/
uint32_t OverSampling; /*!< Specifies whether USART oversampling mode is 16 or 8.
This parameter can be a value of @ref USART_LL_EC_OVERSAMPLING.
This feature can be modified afterwards using unitary function @ref LL_USART_SetOverSampling().*/
} LL_USART_InitTypeDef;
/**
* @brief LL USART Clock Init Structure definition
*/
typedef struct
{
uint32_t ClockOutput; /*!< Specifies whether the USART clock is enabled or disabled.
This parameter can be a value of @ref USART_LL_EC_CLOCK.
USART HW configuration can be modified afterwards using unitary functions
@ref LL_USART_EnableSCLKOutput() or @ref LL_USART_DisableSCLKOutput().
For more details, refer to description of this function. */
uint32_t ClockPolarity; /*!< Specifies the steady state of the serial clock.
This parameter can be a value of @ref USART_LL_EC_POLARITY.
USART HW configuration can be modified afterwards using unitary functions @ref LL_USART_SetClockPolarity().
For more details, refer to description of this function. */
uint32_t ClockPhase; /*!< Specifies the clock transition on which the bit capture is made.
This parameter can be a value of @ref USART_LL_EC_PHASE.
USART HW configuration can be modified afterwards using unitary functions @ref LL_USART_SetClockPhase().
For more details, refer to description of this function. */
uint32_t LastBitClockPulse; /*!< Specifies whether the clock pulse corresponding to the last transmitted
data bit (MSB) has to be output on the SCLK pin in synchronous mode.
This parameter can be a value of @ref USART_LL_EC_LASTCLKPULSE.
USART HW configuration can be modified afterwards using unitary functions @ref LL_USART_SetLastClkPulseOutput().
For more details, refer to description of this function. */
} LL_USART_ClockInitTypeDef;
/**
* @}
*/
#endif /* USE_FULL_LL_DRIVER */
/* Exported constants --------------------------------------------------------*/
/** @defgroup USART_LL_Exported_Constants USART Exported Constants
* @{
*/
/** @defgroup USART_LL_EC_GET_FLAG Get Flags Defines
* @brief Flags defines which can be used with LL_USART_ReadReg function
* @{
*/
#define LL_USART_SR_PE USART_SR_PE /*!< Parity error flag */
#define LL_USART_SR_FE USART_SR_FE /*!< Framing error flag */
#define LL_USART_SR_NE USART_SR_NE /*!< Noise detected flag */
#define LL_USART_SR_ORE USART_SR_ORE /*!< Overrun error flag */
#define LL_USART_SR_IDLE USART_SR_IDLE /*!< Idle line detected flag */
#define LL_USART_SR_RXNE USART_SR_RXNE /*!< Read data register not empty flag */
#define LL_USART_SR_TC USART_SR_TC /*!< Transmission complete flag */
#define LL_USART_SR_TXE USART_SR_TXE /*!< Transmit data register empty flag */
#define LL_USART_SR_LBD USART_SR_LBD /*!< LIN break detection flag */
#define LL_USART_SR_CTS USART_SR_CTS /*!< CTS flag */
/**
* @}
*/
/** @defgroup USART_LL_EC_IT IT Defines
* @brief IT defines which can be used with LL_USART_ReadReg and LL_USART_WriteReg functions
* @{
*/
#define LL_USART_CR1_IDLEIE USART_CR1_IDLEIE /*!< IDLE interrupt enable */
#define LL_USART_CR1_RXNEIE USART_CR1_RXNEIE /*!< Read data register not empty interrupt enable */
#define LL_USART_CR1_TCIE USART_CR1_TCIE /*!< Transmission complete interrupt enable */
#define LL_USART_CR1_TXEIE USART_CR1_TXEIE /*!< Transmit data register empty interrupt enable */
#define LL_USART_CR1_PEIE USART_CR1_PEIE /*!< Parity error */
#define LL_USART_CR2_LBDIE USART_CR2_LBDIE /*!< LIN break detection interrupt enable */
#define LL_USART_CR3_EIE USART_CR3_EIE /*!< Error interrupt enable */
#define LL_USART_CR3_CTSIE USART_CR3_CTSIE /*!< CTS interrupt enable */
/**
* @}
*/
/** @defgroup USART_LL_EC_DIRECTION Communication Direction
* @{
*/
#define LL_USART_DIRECTION_NONE 0x00000000U /*!< Transmitter and Receiver are disabled */
#define LL_USART_DIRECTION_RX USART_CR1_RE /*!< Transmitter is disabled and Receiver is enabled */
#define LL_USART_DIRECTION_TX USART_CR1_TE /*!< Transmitter is enabled and Receiver is disabled */
#define LL_USART_DIRECTION_TX_RX (USART_CR1_TE |USART_CR1_RE) /*!< Transmitter and Receiver are enabled */
/**
* @}
*/
/** @defgroup USART_LL_EC_PARITY Parity Control
* @{
*/
#define LL_USART_PARITY_NONE 0x00000000U /*!< Parity control disabled */
#define LL_USART_PARITY_EVEN USART_CR1_PCE /*!< Parity control enabled and Even Parity is selected */
#define LL_USART_PARITY_ODD (USART_CR1_PCE | USART_CR1_PS) /*!< Parity control enabled and Odd Parity is selected */
/**
* @}
*/
/** @defgroup USART_LL_EC_WAKEUP Wakeup
* @{
*/
#define LL_USART_WAKEUP_IDLELINE 0x00000000U /*!< USART wake up from Mute mode on Idle Line */
#define LL_USART_WAKEUP_ADDRESSMARK USART_CR1_WAKE /*!< USART wake up from Mute mode on Address Mark */
/**
* @}
*/
/** @defgroup USART_LL_EC_DATAWIDTH Datawidth
* @{
*/
#define LL_USART_DATAWIDTH_8B 0x00000000U /*!< 8 bits word length : Start bit, 8 data bits, n stop bits */
#define LL_USART_DATAWIDTH_9B USART_CR1_M /*!< 9 bits word length : Start bit, 9 data bits, n stop bits */
/**
* @}
*/
/** @defgroup USART_LL_EC_OVERSAMPLING Oversampling
* @{
*/
#define LL_USART_OVERSAMPLING_16 0x00000000U /*!< Oversampling by 16 */
#if defined(USART_CR1_OVER8)
#define LL_USART_OVERSAMPLING_8 USART_CR1_OVER8 /*!< Oversampling by 8 */
#endif /* USART_OverSampling_Feature */
/**
* @}
*/
#if defined(USE_FULL_LL_DRIVER)
/** @defgroup USART_LL_EC_CLOCK Clock Signal
* @{
*/
#define LL_USART_CLOCK_DISABLE 0x00000000U /*!< Clock signal not provided */
#define LL_USART_CLOCK_ENABLE USART_CR2_CLKEN /*!< Clock signal provided */
/**
* @}
*/
#endif /*USE_FULL_LL_DRIVER*/
/** @defgroup USART_LL_EC_LASTCLKPULSE Last Clock Pulse
* @{
*/
#define LL_USART_LASTCLKPULSE_NO_OUTPUT 0x00000000U /*!< The clock pulse of the last data bit is not output to the SCLK pin */
#define LL_USART_LASTCLKPULSE_OUTPUT USART_CR2_LBCL /*!< The clock pulse of the last data bit is output to the SCLK pin */
/**
* @}
*/
/** @defgroup USART_LL_EC_PHASE Clock Phase
* @{
*/
#define LL_USART_PHASE_1EDGE 0x00000000U /*!< The first clock transition is the first data capture edge */
#define LL_USART_PHASE_2EDGE USART_CR2_CPHA /*!< The second clock transition is the first data capture edge */
/**
* @}
*/
/** @defgroup USART_LL_EC_POLARITY Clock Polarity
* @{
*/
#define LL_USART_POLARITY_LOW 0x00000000U /*!< Steady low value on SCLK pin outside transmission window*/
#define LL_USART_POLARITY_HIGH USART_CR2_CPOL /*!< Steady high value on SCLK pin outside transmission window */
/**
* @}
*/
/** @defgroup USART_LL_EC_STOPBITS Stop Bits
* @{
*/
#define LL_USART_STOPBITS_0_5 USART_CR2_STOP_0 /*!< 0.5 stop bit */
#define LL_USART_STOPBITS_1 0x00000000U /*!< 1 stop bit */
#define LL_USART_STOPBITS_1_5 (USART_CR2_STOP_0 | USART_CR2_STOP_1) /*!< 1.5 stop bits */
#define LL_USART_STOPBITS_2 USART_CR2_STOP_1 /*!< 2 stop bits */
/**
* @}
*/
/** @defgroup USART_LL_EC_HWCONTROL Hardware Control
* @{
*/
#define LL_USART_HWCONTROL_NONE 0x00000000U /*!< CTS and RTS hardware flow control disabled */
#define LL_USART_HWCONTROL_RTS USART_CR3_RTSE /*!< RTS output enabled, data is only requested when there is space in the receive buffer */
#define LL_USART_HWCONTROL_CTS USART_CR3_CTSE /*!< CTS mode enabled, data is only transmitted when the nCTS input is asserted (tied to 0) */
#define LL_USART_HWCONTROL_RTS_CTS (USART_CR3_RTSE | USART_CR3_CTSE) /*!< CTS and RTS hardware flow control enabled */
/**
* @}
*/
/** @defgroup USART_LL_EC_IRDA_POWER IrDA Power
* @{
*/
#define LL_USART_IRDA_POWER_NORMAL 0x00000000U /*!< IrDA normal power mode */
#define LL_USART_IRDA_POWER_LOW USART_CR3_IRLP /*!< IrDA low power mode */
/**
* @}
*/
/** @defgroup USART_LL_EC_LINBREAK_DETECT LIN Break Detection Length
* @{
*/
#define LL_USART_LINBREAK_DETECT_10B 0x00000000U /*!< 10-bit break detection method selected */
#define LL_USART_LINBREAK_DETECT_11B USART_CR2_LBDL /*!< 11-bit break detection method selected */
/**
* @}
*/
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/** @defgroup USART_LL_Exported_Macros USART Exported Macros
* @{
*/
/** @defgroup USART_LL_EM_WRITE_READ Common Write and read registers Macros
* @{
*/
/**
* @brief Write a value in USART register
* @param __INSTANCE__ USART Instance
* @param __REG__ Register to be written
* @param __VALUE__ Value to be written in the register
* @retval None
*/
#define LL_USART_WriteReg(__INSTANCE__, __REG__, __VALUE__) WRITE_REG(__INSTANCE__->__REG__, (__VALUE__))
/**
* @brief Read a value in USART register
* @param __INSTANCE__ USART Instance
* @param __REG__ Register to be read
* @retval Register value
*/
#define LL_USART_ReadReg(__INSTANCE__, __REG__) READ_REG(__INSTANCE__->__REG__)
/**
* @}
*/
/** @defgroup USART_LL_EM_Exported_Macros_Helper Exported_Macros_Helper
* @{
*/
/**
* @brief Compute USARTDIV value according to Peripheral Clock and
* expected Baud Rate in 8 bits sampling mode (32 bits value of USARTDIV is returned)
* @param __PERIPHCLK__ Peripheral Clock frequency used for USART instance
* @param __BAUDRATE__ Baud rate value to achieve
* @retval USARTDIV value to be used for BRR register filling in OverSampling_8 case
*/
#define __LL_USART_DIV_SAMPLING8_100(__PERIPHCLK__, __BAUDRATE__) (((__PERIPHCLK__)*25)/(2*(__BAUDRATE__)))
#define __LL_USART_DIVMANT_SAMPLING8(__PERIPHCLK__, __BAUDRATE__) (__LL_USART_DIV_SAMPLING8_100((__PERIPHCLK__), (__BAUDRATE__))/100)
#define __LL_USART_DIVFRAQ_SAMPLING8(__PERIPHCLK__, __BAUDRATE__) (((__LL_USART_DIV_SAMPLING8_100((__PERIPHCLK__), (__BAUDRATE__)) - (__LL_USART_DIVMANT_SAMPLING8((__PERIPHCLK__), (__BAUDRATE__)) * 100)) * 8 + 50) / 100)
/* UART BRR = mantissa + overflow + fraction
= (UART DIVMANT << 4) + ((UART DIVFRAQ & 0xF8) << 1) + (UART DIVFRAQ & 0x07) */
#define __LL_USART_DIV_SAMPLING8(__PERIPHCLK__, __BAUDRATE__) (((__LL_USART_DIVMANT_SAMPLING8((__PERIPHCLK__), (__BAUDRATE__)) << 4) + \
((__LL_USART_DIVFRAQ_SAMPLING8((__PERIPHCLK__), (__BAUDRATE__)) & 0xF8) << 1)) + \
(__LL_USART_DIVFRAQ_SAMPLING8((__PERIPHCLK__), (__BAUDRATE__)) & 0x07))
/**
* @brief Compute USARTDIV value according to Peripheral Clock and
* expected Baud Rate in 16 bits sampling mode (32 bits value of USARTDIV is returned)
* @param __PERIPHCLK__ Peripheral Clock frequency used for USART instance
* @param __BAUDRATE__ Baud rate value to achieve
* @retval USARTDIV value to be used for BRR register filling in OverSampling_16 case
*/
#define __LL_USART_DIV_SAMPLING16_100(__PERIPHCLK__, __BAUDRATE__) (((__PERIPHCLK__)*25)/(4*(__BAUDRATE__)))
#define __LL_USART_DIVMANT_SAMPLING16(__PERIPHCLK__, __BAUDRATE__) (__LL_USART_DIV_SAMPLING16_100((__PERIPHCLK__), (__BAUDRATE__))/100)
#define __LL_USART_DIVFRAQ_SAMPLING16(__PERIPHCLK__, __BAUDRATE__) (((__LL_USART_DIV_SAMPLING16_100((__PERIPHCLK__), (__BAUDRATE__)) - (__LL_USART_DIVMANT_SAMPLING16((__PERIPHCLK__), (__BAUDRATE__)) * 100)) * 16 + 50) / 100)
/* USART BRR = mantissa + overflow + fraction
= (USART DIVMANT << 4) + (USART DIVFRAQ & 0xF0) + (USART DIVFRAQ & 0x0F) */
#define __LL_USART_DIV_SAMPLING16(__PERIPHCLK__, __BAUDRATE__) (((__LL_USART_DIVMANT_SAMPLING16((__PERIPHCLK__), (__BAUDRATE__)) << 4) + \
(__LL_USART_DIVFRAQ_SAMPLING16((__PERIPHCLK__), (__BAUDRATE__)) & 0xF0)) + \
(__LL_USART_DIVFRAQ_SAMPLING16((__PERIPHCLK__), (__BAUDRATE__)) & 0x0F))
/**
* @}
*/
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup USART_LL_Exported_Functions USART Exported Functions
* @{
*/
/** @defgroup USART_LL_EF_Configuration Configuration functions
* @{
*/
/**
* @brief USART Enable
* @rmtoll CR1 UE LL_USART_Enable
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_Enable(USART_TypeDef *USARTx)
{
SET_BIT(USARTx->CR1, USART_CR1_UE);
}
/**
* @brief USART Disable (all USART prescalers and outputs are disabled)
* @note When USART is disabled, USART prescalers and outputs are stopped immediately,
* and current operations are discarded. The configuration of the USART is kept, but all the status
* flags, in the USARTx_SR are set to their default values.
* @rmtoll CR1 UE LL_USART_Disable
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_Disable(USART_TypeDef *USARTx)
{
CLEAR_BIT(USARTx->CR1, USART_CR1_UE);
}
/**
* @brief Indicate if USART is enabled
* @rmtoll CR1 UE LL_USART_IsEnabled
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsEnabled(USART_TypeDef *USARTx)
{
return (READ_BIT(USARTx->CR1, USART_CR1_UE) == (USART_CR1_UE));
}
/**
* @brief Receiver Enable (Receiver is enabled and begins searching for a start bit)
* @rmtoll CR1 RE LL_USART_EnableDirectionRx
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_EnableDirectionRx(USART_TypeDef *USARTx)
{
SET_BIT(USARTx->CR1, USART_CR1_RE);
}
/**
* @brief Receiver Disable
* @rmtoll CR1 RE LL_USART_DisableDirectionRx
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_DisableDirectionRx(USART_TypeDef *USARTx)
{
CLEAR_BIT(USARTx->CR1, USART_CR1_RE);
}
/**
* @brief Transmitter Enable
* @rmtoll CR1 TE LL_USART_EnableDirectionTx
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_EnableDirectionTx(USART_TypeDef *USARTx)
{
SET_BIT(USARTx->CR1, USART_CR1_TE);
}
/**
* @brief Transmitter Disable
* @rmtoll CR1 TE LL_USART_DisableDirectionTx
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_DisableDirectionTx(USART_TypeDef *USARTx)
{
CLEAR_BIT(USARTx->CR1, USART_CR1_TE);
}
/**
* @brief Configure simultaneously enabled/disabled states
* of Transmitter and Receiver
* @rmtoll CR1 RE LL_USART_SetTransferDirection\n
* CR1 TE LL_USART_SetTransferDirection
* @param USARTx USART Instance
* @param TransferDirection This parameter can be one of the following values:
* @arg @ref LL_USART_DIRECTION_NONE
* @arg @ref LL_USART_DIRECTION_RX
* @arg @ref LL_USART_DIRECTION_TX
* @arg @ref LL_USART_DIRECTION_TX_RX
* @retval None
*/
__STATIC_INLINE void LL_USART_SetTransferDirection(USART_TypeDef *USARTx, uint32_t TransferDirection)
{
MODIFY_REG(USARTx->CR1, USART_CR1_RE | USART_CR1_TE, TransferDirection);
}
/**
* @brief Return enabled/disabled states of Transmitter and Receiver
* @rmtoll CR1 RE LL_USART_GetTransferDirection\n
* CR1 TE LL_USART_GetTransferDirection
* @param USARTx USART Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_USART_DIRECTION_NONE
* @arg @ref LL_USART_DIRECTION_RX
* @arg @ref LL_USART_DIRECTION_TX
* @arg @ref LL_USART_DIRECTION_TX_RX
*/
__STATIC_INLINE uint32_t LL_USART_GetTransferDirection(USART_TypeDef *USARTx)
{
return (uint32_t)(READ_BIT(USARTx->CR1, USART_CR1_RE | USART_CR1_TE));
}
/**
* @brief Configure Parity (enabled/disabled and parity mode if enabled).
* @note This function selects if hardware parity control (generation and detection) is enabled or disabled.
* When the parity control is enabled (Odd or Even), computed parity bit is inserted at the MSB position
* (9th or 8th bit depending on data width) and parity is checked on the received data.
* @rmtoll CR1 PS LL_USART_SetParity\n
* CR1 PCE LL_USART_SetParity
* @param USARTx USART Instance
* @param Parity This parameter can be one of the following values:
* @arg @ref LL_USART_PARITY_NONE
* @arg @ref LL_USART_PARITY_EVEN
* @arg @ref LL_USART_PARITY_ODD
* @retval None
*/
__STATIC_INLINE void LL_USART_SetParity(USART_TypeDef *USARTx, uint32_t Parity)
{
MODIFY_REG(USARTx->CR1, USART_CR1_PS | USART_CR1_PCE, Parity);
}
/**
* @brief Return Parity configuration (enabled/disabled and parity mode if enabled)
* @rmtoll CR1 PS LL_USART_GetParity\n
* CR1 PCE LL_USART_GetParity
* @param USARTx USART Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_USART_PARITY_NONE
* @arg @ref LL_USART_PARITY_EVEN
* @arg @ref LL_USART_PARITY_ODD
*/
__STATIC_INLINE uint32_t LL_USART_GetParity(USART_TypeDef *USARTx)
{
return (uint32_t)(READ_BIT(USARTx->CR1, USART_CR1_PS | USART_CR1_PCE));
}
/**
* @brief Set Receiver Wake Up method from Mute mode.
* @rmtoll CR1 WAKE LL_USART_SetWakeUpMethod
* @param USARTx USART Instance
* @param Method This parameter can be one of the following values:
* @arg @ref LL_USART_WAKEUP_IDLELINE
* @arg @ref LL_USART_WAKEUP_ADDRESSMARK
* @retval None
*/
__STATIC_INLINE void LL_USART_SetWakeUpMethod(USART_TypeDef *USARTx, uint32_t Method)
{
MODIFY_REG(USARTx->CR1, USART_CR1_WAKE, Method);
}
/**
* @brief Return Receiver Wake Up method from Mute mode
* @rmtoll CR1 WAKE LL_USART_GetWakeUpMethod
* @param USARTx USART Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_USART_WAKEUP_IDLELINE
* @arg @ref LL_USART_WAKEUP_ADDRESSMARK
*/
__STATIC_INLINE uint32_t LL_USART_GetWakeUpMethod(USART_TypeDef *USARTx)
{
return (uint32_t)(READ_BIT(USARTx->CR1, USART_CR1_WAKE));
}
/**
* @brief Set Word length (i.e. nb of data bits, excluding start and stop bits)
* @rmtoll CR1 M LL_USART_SetDataWidth
* @param USARTx USART Instance
* @param DataWidth This parameter can be one of the following values:
* @arg @ref LL_USART_DATAWIDTH_8B
* @arg @ref LL_USART_DATAWIDTH_9B
* @retval None
*/
__STATIC_INLINE void LL_USART_SetDataWidth(USART_TypeDef *USARTx, uint32_t DataWidth)
{
MODIFY_REG(USARTx->CR1, USART_CR1_M, DataWidth);
}
/**
* @brief Return Word length (i.e. nb of data bits, excluding start and stop bits)
* @rmtoll CR1 M LL_USART_GetDataWidth
* @param USARTx USART Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_USART_DATAWIDTH_8B
* @arg @ref LL_USART_DATAWIDTH_9B
*/
__STATIC_INLINE uint32_t LL_USART_GetDataWidth(USART_TypeDef *USARTx)
{
return (uint32_t)(READ_BIT(USARTx->CR1, USART_CR1_M));
}
#if defined(USART_CR1_OVER8)
/**
* @brief Set Oversampling to 8-bit or 16-bit mode
* @rmtoll CR1 OVER8 LL_USART_SetOverSampling
* @param USARTx USART Instance
* @param OverSampling This parameter can be one of the following values:
* @arg @ref LL_USART_OVERSAMPLING_16
* @arg @ref LL_USART_OVERSAMPLING_8
* @retval None
*/
__STATIC_INLINE void LL_USART_SetOverSampling(USART_TypeDef *USARTx, uint32_t OverSampling)
{
MODIFY_REG(USARTx->CR1, USART_CR1_OVER8, OverSampling);
}
/**
* @brief Return Oversampling mode
* @rmtoll CR1 OVER8 LL_USART_GetOverSampling
* @param USARTx USART Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_USART_OVERSAMPLING_16
* @arg @ref LL_USART_OVERSAMPLING_8
*/
__STATIC_INLINE uint32_t LL_USART_GetOverSampling(USART_TypeDef *USARTx)
{
return (uint32_t)(READ_BIT(USARTx->CR1, USART_CR1_OVER8));
}
#endif /* USART_OverSampling_Feature */
/**
* @brief Configure if Clock pulse of the last data bit is output to the SCLK pin or not
* @note Macro @ref IS_USART_INSTANCE(USARTx) can be used to check whether or not
* Synchronous mode is supported by the USARTx instance.
* @rmtoll CR2 LBCL LL_USART_SetLastClkPulseOutput
* @param USARTx USART Instance
* @param LastBitClockPulse This parameter can be one of the following values:
* @arg @ref LL_USART_LASTCLKPULSE_NO_OUTPUT
* @arg @ref LL_USART_LASTCLKPULSE_OUTPUT
* @retval None
*/
__STATIC_INLINE void LL_USART_SetLastClkPulseOutput(USART_TypeDef *USARTx, uint32_t LastBitClockPulse)
{
MODIFY_REG(USARTx->CR2, USART_CR2_LBCL, LastBitClockPulse);
}
/**
* @brief Retrieve Clock pulse of the last data bit output configuration
* (Last bit Clock pulse output to the SCLK pin or not)
* @note Macro @ref IS_USART_INSTANCE(USARTx) can be used to check whether or not
* Synchronous mode is supported by the USARTx instance.
* @rmtoll CR2 LBCL LL_USART_GetLastClkPulseOutput
* @param USARTx USART Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_USART_LASTCLKPULSE_NO_OUTPUT
* @arg @ref LL_USART_LASTCLKPULSE_OUTPUT
*/
__STATIC_INLINE uint32_t LL_USART_GetLastClkPulseOutput(USART_TypeDef *USARTx)
{
return (uint32_t)(READ_BIT(USARTx->CR2, USART_CR2_LBCL));
}
/**
* @brief Select the phase of the clock output on the SCLK pin in synchronous mode
* @note Macro @ref IS_USART_INSTANCE(USARTx) can be used to check whether or not
* Synchronous mode is supported by the USARTx instance.
* @rmtoll CR2 CPHA LL_USART_SetClockPhase
* @param USARTx USART Instance
* @param ClockPhase This parameter can be one of the following values:
* @arg @ref LL_USART_PHASE_1EDGE
* @arg @ref LL_USART_PHASE_2EDGE
* @retval None
*/
__STATIC_INLINE void LL_USART_SetClockPhase(USART_TypeDef *USARTx, uint32_t ClockPhase)
{
MODIFY_REG(USARTx->CR2, USART_CR2_CPHA, ClockPhase);
}
/**
* @brief Return phase of the clock output on the SCLK pin in synchronous mode
* @note Macro @ref IS_USART_INSTANCE(USARTx) can be used to check whether or not
* Synchronous mode is supported by the USARTx instance.
* @rmtoll CR2 CPHA LL_USART_GetClockPhase
* @param USARTx USART Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_USART_PHASE_1EDGE
* @arg @ref LL_USART_PHASE_2EDGE
*/
__STATIC_INLINE uint32_t LL_USART_GetClockPhase(USART_TypeDef *USARTx)
{
return (uint32_t)(READ_BIT(USARTx->CR2, USART_CR2_CPHA));
}
/**
* @brief Select the polarity of the clock output on the SCLK pin in synchronous mode
* @note Macro @ref IS_USART_INSTANCE(USARTx) can be used to check whether or not
* Synchronous mode is supported by the USARTx instance.
* @rmtoll CR2 CPOL LL_USART_SetClockPolarity
* @param USARTx USART Instance
* @param ClockPolarity This parameter can be one of the following values:
* @arg @ref LL_USART_POLARITY_LOW
* @arg @ref LL_USART_POLARITY_HIGH
* @retval None
*/
__STATIC_INLINE void LL_USART_SetClockPolarity(USART_TypeDef *USARTx, uint32_t ClockPolarity)
{
MODIFY_REG(USARTx->CR2, USART_CR2_CPOL, ClockPolarity);
}
/**
* @brief Return polarity of the clock output on the SCLK pin in synchronous mode
* @note Macro @ref IS_USART_INSTANCE(USARTx) can be used to check whether or not
* Synchronous mode is supported by the USARTx instance.
* @rmtoll CR2 CPOL LL_USART_GetClockPolarity
* @param USARTx USART Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_USART_POLARITY_LOW
* @arg @ref LL_USART_POLARITY_HIGH
*/
__STATIC_INLINE uint32_t LL_USART_GetClockPolarity(USART_TypeDef *USARTx)
{
return (uint32_t)(READ_BIT(USARTx->CR2, USART_CR2_CPOL));
}
/**
* @brief Configure Clock signal format (Phase Polarity and choice about output of last bit clock pulse)
* @note Macro @ref IS_USART_INSTANCE(USARTx) can be used to check whether or not
* Synchronous mode is supported by the USARTx instance.
* @note Call of this function is equivalent to following function call sequence :
* - Clock Phase configuration using @ref LL_USART_SetClockPhase() function
* - Clock Polarity configuration using @ref LL_USART_SetClockPolarity() function
* - Output of Last bit Clock pulse configuration using @ref LL_USART_SetLastClkPulseOutput() function
* @rmtoll CR2 CPHA LL_USART_ConfigClock\n
* CR2 CPOL LL_USART_ConfigClock\n
* CR2 LBCL LL_USART_ConfigClock
* @param USARTx USART Instance
* @param Phase This parameter can be one of the following values:
* @arg @ref LL_USART_PHASE_1EDGE
* @arg @ref LL_USART_PHASE_2EDGE
* @param Polarity This parameter can be one of the following values:
* @arg @ref LL_USART_POLARITY_LOW
* @arg @ref LL_USART_POLARITY_HIGH
* @param LBCPOutput This parameter can be one of the following values:
* @arg @ref LL_USART_LASTCLKPULSE_NO_OUTPUT
* @arg @ref LL_USART_LASTCLKPULSE_OUTPUT
* @retval None
*/
__STATIC_INLINE void LL_USART_ConfigClock(USART_TypeDef *USARTx, uint32_t Phase, uint32_t Polarity, uint32_t LBCPOutput)
{
MODIFY_REG(USARTx->CR2, USART_CR2_CPHA | USART_CR2_CPOL | USART_CR2_LBCL, Phase | Polarity | LBCPOutput);
}
/**
* @brief Enable Clock output on SCLK pin
* @note Macro @ref IS_USART_INSTANCE(USARTx) can be used to check whether or not
* Synchronous mode is supported by the USARTx instance.
* @rmtoll CR2 CLKEN LL_USART_EnableSCLKOutput
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_EnableSCLKOutput(USART_TypeDef *USARTx)
{
SET_BIT(USARTx->CR2, USART_CR2_CLKEN);
}
/**
* @brief Disable Clock output on SCLK pin
* @note Macro @ref IS_USART_INSTANCE(USARTx) can be used to check whether or not
* Synchronous mode is supported by the USARTx instance.
* @rmtoll CR2 CLKEN LL_USART_DisableSCLKOutput
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_DisableSCLKOutput(USART_TypeDef *USARTx)
{
CLEAR_BIT(USARTx->CR2, USART_CR2_CLKEN);
}
/**
* @brief Indicate if Clock output on SCLK pin is enabled
* @note Macro @ref IS_USART_INSTANCE(USARTx) can be used to check whether or not
* Synchronous mode is supported by the USARTx instance.
* @rmtoll CR2 CLKEN LL_USART_IsEnabledSCLKOutput
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsEnabledSCLKOutput(USART_TypeDef *USARTx)
{
return (READ_BIT(USARTx->CR2, USART_CR2_CLKEN) == (USART_CR2_CLKEN));
}
/**
* @brief Set the length of the stop bits
* @rmtoll CR2 STOP LL_USART_SetStopBitsLength
* @param USARTx USART Instance
* @param StopBits This parameter can be one of the following values:
* @arg @ref LL_USART_STOPBITS_0_5
* @arg @ref LL_USART_STOPBITS_1
* @arg @ref LL_USART_STOPBITS_1_5
* @arg @ref LL_USART_STOPBITS_2
* @retval None
*/
__STATIC_INLINE void LL_USART_SetStopBitsLength(USART_TypeDef *USARTx, uint32_t StopBits)
{
MODIFY_REG(USARTx->CR2, USART_CR2_STOP, StopBits);
}
/**
* @brief Retrieve the length of the stop bits
* @rmtoll CR2 STOP LL_USART_GetStopBitsLength
* @param USARTx USART Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_USART_STOPBITS_0_5
* @arg @ref LL_USART_STOPBITS_1
* @arg @ref LL_USART_STOPBITS_1_5
* @arg @ref LL_USART_STOPBITS_2
*/
__STATIC_INLINE uint32_t LL_USART_GetStopBitsLength(USART_TypeDef *USARTx)
{
return (uint32_t)(READ_BIT(USARTx->CR2, USART_CR2_STOP));
}
/**
* @brief Configure Character frame format (Datawidth, Parity control, Stop Bits)
* @note Call of this function is equivalent to following function call sequence :
* - Data Width configuration using @ref LL_USART_SetDataWidth() function
* - Parity Control and mode configuration using @ref LL_USART_SetParity() function
* - Stop bits configuration using @ref LL_USART_SetStopBitsLength() function
* @rmtoll CR1 PS LL_USART_ConfigCharacter\n
* CR1 PCE LL_USART_ConfigCharacter\n
* CR1 M LL_USART_ConfigCharacter\n
* CR2 STOP LL_USART_ConfigCharacter
* @param USARTx USART Instance
* @param DataWidth This parameter can be one of the following values:
* @arg @ref LL_USART_DATAWIDTH_8B
* @arg @ref LL_USART_DATAWIDTH_9B
* @param Parity This parameter can be one of the following values:
* @arg @ref LL_USART_PARITY_NONE
* @arg @ref LL_USART_PARITY_EVEN
* @arg @ref LL_USART_PARITY_ODD
* @param StopBits This parameter can be one of the following values:
* @arg @ref LL_USART_STOPBITS_0_5
* @arg @ref LL_USART_STOPBITS_1
* @arg @ref LL_USART_STOPBITS_1_5
* @arg @ref LL_USART_STOPBITS_2
* @retval None
*/
__STATIC_INLINE void LL_USART_ConfigCharacter(USART_TypeDef *USARTx, uint32_t DataWidth, uint32_t Parity,
uint32_t StopBits)
{
MODIFY_REG(USARTx->CR1, USART_CR1_PS | USART_CR1_PCE | USART_CR1_M, Parity | DataWidth);
MODIFY_REG(USARTx->CR2, USART_CR2_STOP, StopBits);
}
/**
* @brief Set Address of the USART node.
* @note This is used in multiprocessor communication during Mute mode or Stop mode,
* for wake up with address mark detection.
* @rmtoll CR2 ADD LL_USART_SetNodeAddress
* @param USARTx USART Instance
* @param NodeAddress 4 bit Address of the USART node.
* @retval None
*/
__STATIC_INLINE void LL_USART_SetNodeAddress(USART_TypeDef *USARTx, uint32_t NodeAddress)
{
MODIFY_REG(USARTx->CR2, USART_CR2_ADD, (NodeAddress & USART_CR2_ADD));
}
/**
* @brief Return 4 bit Address of the USART node as set in ADD field of CR2.
* @note only 4bits (b3-b0) of returned value are relevant (b31-b4 are not relevant)
* @rmtoll CR2 ADD LL_USART_GetNodeAddress
* @param USARTx USART Instance
* @retval Address of the USART node (Value between Min_Data=0 and Max_Data=255)
*/
__STATIC_INLINE uint32_t LL_USART_GetNodeAddress(USART_TypeDef *USARTx)
{
return (uint32_t)(READ_BIT(USARTx->CR2, USART_CR2_ADD));
}
/**
* @brief Enable RTS HW Flow Control
* @note Macro @ref IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not
* Hardware Flow control feature is supported by the USARTx instance.
* @rmtoll CR3 RTSE LL_USART_EnableRTSHWFlowCtrl
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_EnableRTSHWFlowCtrl(USART_TypeDef *USARTx)
{
SET_BIT(USARTx->CR3, USART_CR3_RTSE);
}
/**
* @brief Disable RTS HW Flow Control
* @note Macro @ref IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not
* Hardware Flow control feature is supported by the USARTx instance.
* @rmtoll CR3 RTSE LL_USART_DisableRTSHWFlowCtrl
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_DisableRTSHWFlowCtrl(USART_TypeDef *USARTx)
{
CLEAR_BIT(USARTx->CR3, USART_CR3_RTSE);
}
/**
* @brief Enable CTS HW Flow Control
* @note Macro @ref IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not
* Hardware Flow control feature is supported by the USARTx instance.
* @rmtoll CR3 CTSE LL_USART_EnableCTSHWFlowCtrl
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_EnableCTSHWFlowCtrl(USART_TypeDef *USARTx)
{
SET_BIT(USARTx->CR3, USART_CR3_CTSE);
}
/**
* @brief Disable CTS HW Flow Control
* @note Macro @ref IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not
* Hardware Flow control feature is supported by the USARTx instance.
* @rmtoll CR3 CTSE LL_USART_DisableCTSHWFlowCtrl
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_DisableCTSHWFlowCtrl(USART_TypeDef *USARTx)
{
CLEAR_BIT(USARTx->CR3, USART_CR3_CTSE);
}
/**
* @brief Configure HW Flow Control mode (both CTS and RTS)
* @note Macro @ref IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not
* Hardware Flow control feature is supported by the USARTx instance.
* @rmtoll CR3 RTSE LL_USART_SetHWFlowCtrl\n
* CR3 CTSE LL_USART_SetHWFlowCtrl
* @param USARTx USART Instance
* @param HardwareFlowControl This parameter can be one of the following values:
* @arg @ref LL_USART_HWCONTROL_NONE
* @arg @ref LL_USART_HWCONTROL_RTS
* @arg @ref LL_USART_HWCONTROL_CTS
* @arg @ref LL_USART_HWCONTROL_RTS_CTS
* @retval None
*/
__STATIC_INLINE void LL_USART_SetHWFlowCtrl(USART_TypeDef *USARTx, uint32_t HardwareFlowControl)
{
MODIFY_REG(USARTx->CR3, USART_CR3_RTSE | USART_CR3_CTSE, HardwareFlowControl);
}
/**
* @brief Return HW Flow Control configuration (both CTS and RTS)
* @note Macro @ref IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not
* Hardware Flow control feature is supported by the USARTx instance.
* @rmtoll CR3 RTSE LL_USART_GetHWFlowCtrl\n
* CR3 CTSE LL_USART_GetHWFlowCtrl
* @param USARTx USART Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_USART_HWCONTROL_NONE
* @arg @ref LL_USART_HWCONTROL_RTS
* @arg @ref LL_USART_HWCONTROL_CTS
* @arg @ref LL_USART_HWCONTROL_RTS_CTS
*/
__STATIC_INLINE uint32_t LL_USART_GetHWFlowCtrl(USART_TypeDef *USARTx)
{
return (uint32_t)(READ_BIT(USARTx->CR3, USART_CR3_RTSE | USART_CR3_CTSE));
}
#if defined(USART_CR3_ONEBIT)
/**
* @brief Enable One bit sampling method
* @rmtoll CR3 ONEBIT LL_USART_EnableOneBitSamp
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_EnableOneBitSamp(USART_TypeDef *USARTx)
{
SET_BIT(USARTx->CR3, USART_CR3_ONEBIT);
}
/**
* @brief Disable One bit sampling method
* @rmtoll CR3 ONEBIT LL_USART_DisableOneBitSamp
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_DisableOneBitSamp(USART_TypeDef *USARTx)
{
CLEAR_BIT(USARTx->CR3, USART_CR3_ONEBIT);
}
/**
* @brief Indicate if One bit sampling method is enabled
* @rmtoll CR3 ONEBIT LL_USART_IsEnabledOneBitSamp
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsEnabledOneBitSamp(USART_TypeDef *USARTx)
{
return (READ_BIT(USARTx->CR3, USART_CR3_ONEBIT) == (USART_CR3_ONEBIT));
}
#endif /* USART_OneBitSampling_Feature */
#if defined(USART_CR1_OVER8)
/**
* @brief Configure USART BRR register for achieving expected Baud Rate value.
* @note Compute and set USARTDIV value in BRR Register (full BRR content)
* according to used Peripheral Clock, Oversampling mode, and expected Baud Rate values
* @note Peripheral clock and Baud rate values provided as function parameters should be valid
* (Baud rate value != 0)
* @rmtoll BRR BRR LL_USART_SetBaudRate
* @param USARTx USART Instance
* @param PeriphClk Peripheral Clock
* @param OverSampling This parameter can be one of the following values:
* @arg @ref LL_USART_OVERSAMPLING_16
* @arg @ref LL_USART_OVERSAMPLING_8
* @param BaudRate Baud Rate
* @retval None
*/
__STATIC_INLINE void LL_USART_SetBaudRate(USART_TypeDef *USARTx, uint32_t PeriphClk, uint32_t OverSampling,
uint32_t BaudRate)
{
if (OverSampling == LL_USART_OVERSAMPLING_8)
{
USARTx->BRR = (uint16_t)(__LL_USART_DIV_SAMPLING8(PeriphClk, BaudRate));
}
else
{
USARTx->BRR = (uint16_t)(__LL_USART_DIV_SAMPLING16(PeriphClk, BaudRate));
}
}
/**
* @brief Return current Baud Rate value, according to USARTDIV present in BRR register
* (full BRR content), and to used Peripheral Clock and Oversampling mode values
* @note In case of non-initialized or invalid value stored in BRR register, value 0 will be returned.
* @rmtoll BRR BRR LL_USART_GetBaudRate
* @param USARTx USART Instance
* @param PeriphClk Peripheral Clock
* @param OverSampling This parameter can be one of the following values:
* @arg @ref LL_USART_OVERSAMPLING_16
* @arg @ref LL_USART_OVERSAMPLING_8
* @retval Baud Rate
*/
__STATIC_INLINE uint32_t LL_USART_GetBaudRate(USART_TypeDef *USARTx, uint32_t PeriphClk, uint32_t OverSampling)
{
register uint32_t usartdiv = 0x0U;
register uint32_t brrresult = 0x0U;
usartdiv = USARTx->BRR;
if (OverSampling == LL_USART_OVERSAMPLING_8)
{
if ((usartdiv & 0xFFF7U) != 0U)
{
usartdiv = (uint16_t)((usartdiv & 0xFFF0U) | ((usartdiv & 0x0007U) << 1U)) ;
brrresult = (PeriphClk * 2U) / usartdiv;
}
}
else
{
if ((usartdiv & 0xFFFFU) != 0U)
{
brrresult = PeriphClk / usartdiv;
}
}
return (brrresult);
}
#else
/**
* @brief Configure USART BRR register for achieving expected Baud Rate value.
* @note Compute and set USARTDIV value in BRR Register (full BRR content)
* according to used Peripheral Clock, Oversampling mode, and expected Baud Rate values
* @note Peripheral clock and Baud rate values provided as function parameters should be valid
* (Baud rate value != 0)
* @rmtoll BRR BRR LL_USART_SetBaudRate
* @param USARTx USART Instance
* @param PeriphClk Peripheral Clock
* @param BaudRate Baud Rate
* @retval None
*/
__STATIC_INLINE void LL_USART_SetBaudRate(USART_TypeDef *USARTx, uint32_t PeriphClk, uint32_t BaudRate)
{
USARTx->BRR = (uint16_t)(__LL_USART_DIV_SAMPLING16(PeriphClk, BaudRate));
}
/**
* @brief Return current Baud Rate value, according to USARTDIV present in BRR register
* (full BRR content), and to used Peripheral Clock and Oversampling mode values
* @note In case of non-initialized or invalid value stored in BRR register, value 0 will be returned.
* @rmtoll BRR BRR LL_USART_GetBaudRate
* @param USARTx USART Instance
* @param PeriphClk Peripheral Clock
* @retval Baud Rate
*/
__STATIC_INLINE uint32_t LL_USART_GetBaudRate(USART_TypeDef *USARTx, uint32_t PeriphClk)
{
register uint32_t usartdiv = 0x0U;
register uint32_t brrresult = 0x0U;
usartdiv = USARTx->BRR;
if ((usartdiv & 0xFFFFU) != 0U)
{
brrresult = PeriphClk / usartdiv;
}
return (brrresult);
}
#endif /* USART_OverSampling_Feature */
/**
* @}
*/
/** @defgroup USART_LL_EF_Configuration_IRDA Configuration functions related to Irda feature
* @{
*/
/**
* @brief Enable IrDA mode
* @note Macro @ref IS_IRDA_INSTANCE(USARTx) can be used to check whether or not
* IrDA feature is supported by the USARTx instance.
* @rmtoll CR3 IREN LL_USART_EnableIrda
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_EnableIrda(USART_TypeDef *USARTx)
{
SET_BIT(USARTx->CR3, USART_CR3_IREN);
}
/**
* @brief Disable IrDA mode
* @note Macro @ref IS_IRDA_INSTANCE(USARTx) can be used to check whether or not
* IrDA feature is supported by the USARTx instance.
* @rmtoll CR3 IREN LL_USART_DisableIrda
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_DisableIrda(USART_TypeDef *USARTx)
{
CLEAR_BIT(USARTx->CR3, USART_CR3_IREN);
}
/**
* @brief Indicate if IrDA mode is enabled
* @note Macro @ref IS_IRDA_INSTANCE(USARTx) can be used to check whether or not
* IrDA feature is supported by the USARTx instance.
* @rmtoll CR3 IREN LL_USART_IsEnabledIrda
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsEnabledIrda(USART_TypeDef *USARTx)
{
return (READ_BIT(USARTx->CR3, USART_CR3_IREN) == (USART_CR3_IREN));
}
/**
* @brief Configure IrDA Power Mode (Normal or Low Power)
* @note Macro @ref IS_IRDA_INSTANCE(USARTx) can be used to check whether or not
* IrDA feature is supported by the USARTx instance.
* @rmtoll CR3 IRLP LL_USART_SetIrdaPowerMode
* @param USARTx USART Instance
* @param PowerMode This parameter can be one of the following values:
* @arg @ref LL_USART_IRDA_POWER_NORMAL
* @arg @ref LL_USART_IRDA_POWER_LOW
* @retval None
*/
__STATIC_INLINE void LL_USART_SetIrdaPowerMode(USART_TypeDef *USARTx, uint32_t PowerMode)
{
MODIFY_REG(USARTx->CR3, USART_CR3_IRLP, PowerMode);
}
/**
* @brief Retrieve IrDA Power Mode configuration (Normal or Low Power)
* @note Macro @ref IS_IRDA_INSTANCE(USARTx) can be used to check whether or not
* IrDA feature is supported by the USARTx instance.
* @rmtoll CR3 IRLP LL_USART_GetIrdaPowerMode
* @param USARTx USART Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_USART_IRDA_POWER_NORMAL
* @arg @ref LL_USART_PHASE_2EDGE
*/
__STATIC_INLINE uint32_t LL_USART_GetIrdaPowerMode(USART_TypeDef *USARTx)
{
return (uint32_t)(READ_BIT(USARTx->CR3, USART_CR3_IRLP));
}
/**
* @brief Set Irda prescaler value, used for dividing the USART clock source
* to achieve the Irda Low Power frequency (8 bits value)
* @note Macro @ref IS_IRDA_INSTANCE(USARTx) can be used to check whether or not
* IrDA feature is supported by the USARTx instance.
* @rmtoll GTPR PSC LL_USART_SetIrdaPrescaler
* @param USARTx USART Instance
* @param PrescalerValue Value between Min_Data=0x00 and Max_Data=0xFF
* @retval None
*/
__STATIC_INLINE void LL_USART_SetIrdaPrescaler(USART_TypeDef *USARTx, uint32_t PrescalerValue)
{
MODIFY_REG(USARTx->GTPR, USART_GTPR_PSC, PrescalerValue);
}
/**
* @brief Return Irda prescaler value, used for dividing the USART clock source
* to achieve the Irda Low Power frequency (8 bits value)
* @note Macro @ref IS_IRDA_INSTANCE(USARTx) can be used to check whether or not
* IrDA feature is supported by the USARTx instance.
* @rmtoll GTPR PSC LL_USART_GetIrdaPrescaler
* @param USARTx USART Instance
* @retval Irda prescaler value (Value between Min_Data=0x00 and Max_Data=0xFF)
*/
__STATIC_INLINE uint32_t LL_USART_GetIrdaPrescaler(USART_TypeDef *USARTx)
{
return (uint32_t)(READ_BIT(USARTx->GTPR, USART_GTPR_PSC));
}
/**
* @}
*/
/** @defgroup USART_LL_EF_Configuration_Smartcard Configuration functions related to Smartcard feature
* @{
*/
/**
* @brief Enable Smartcard NACK transmission
* @note Macro @ref IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
* Smartcard feature is supported by the USARTx instance.
* @rmtoll CR3 NACK LL_USART_EnableSmartcardNACK
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_EnableSmartcardNACK(USART_TypeDef *USARTx)
{
SET_BIT(USARTx->CR3, USART_CR3_NACK);
}
/**
* @brief Disable Smartcard NACK transmission
* @note Macro @ref IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
* Smartcard feature is supported by the USARTx instance.
* @rmtoll CR3 NACK LL_USART_DisableSmartcardNACK
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_DisableSmartcardNACK(USART_TypeDef *USARTx)
{
CLEAR_BIT(USARTx->CR3, USART_CR3_NACK);
}
/**
* @brief Indicate if Smartcard NACK transmission is enabled
* @note Macro @ref IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
* Smartcard feature is supported by the USARTx instance.
* @rmtoll CR3 NACK LL_USART_IsEnabledSmartcardNACK
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsEnabledSmartcardNACK(USART_TypeDef *USARTx)
{
return (READ_BIT(USARTx->CR3, USART_CR3_NACK) == (USART_CR3_NACK));
}
/**
* @brief Enable Smartcard mode
* @note Macro @ref IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
* Smartcard feature is supported by the USARTx instance.
* @rmtoll CR3 SCEN LL_USART_EnableSmartcard
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_EnableSmartcard(USART_TypeDef *USARTx)
{
SET_BIT(USARTx->CR3, USART_CR3_SCEN);
}
/**
* @brief Disable Smartcard mode
* @note Macro @ref IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
* Smartcard feature is supported by the USARTx instance.
* @rmtoll CR3 SCEN LL_USART_DisableSmartcard
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_DisableSmartcard(USART_TypeDef *USARTx)
{
CLEAR_BIT(USARTx->CR3, USART_CR3_SCEN);
}
/**
* @brief Indicate if Smartcard mode is enabled
* @note Macro @ref IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
* Smartcard feature is supported by the USARTx instance.
* @rmtoll CR3 SCEN LL_USART_IsEnabledSmartcard
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsEnabledSmartcard(USART_TypeDef *USARTx)
{
return (READ_BIT(USARTx->CR3, USART_CR3_SCEN) == (USART_CR3_SCEN));
}
/**
* @brief Set Smartcard prescaler value, used for dividing the USART clock
* source to provide the SMARTCARD Clock (5 bits value)
* @note Macro @ref IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
* Smartcard feature is supported by the USARTx instance.
* @rmtoll GTPR PSC LL_USART_SetSmartcardPrescaler
* @param USARTx USART Instance
* @param PrescalerValue Value between Min_Data=0 and Max_Data=31
* @retval None
*/
__STATIC_INLINE void LL_USART_SetSmartcardPrescaler(USART_TypeDef *USARTx, uint32_t PrescalerValue)
{
MODIFY_REG(USARTx->GTPR, USART_GTPR_PSC, PrescalerValue);
}
/**
* @brief Return Smartcard prescaler value, used for dividing the USART clock
* source to provide the SMARTCARD Clock (5 bits value)
* @note Macro @ref IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
* Smartcard feature is supported by the USARTx instance.
* @rmtoll GTPR PSC LL_USART_GetSmartcardPrescaler
* @param USARTx USART Instance
* @retval Smartcard prescaler value (Value between Min_Data=0 and Max_Data=31)
*/
__STATIC_INLINE uint32_t LL_USART_GetSmartcardPrescaler(USART_TypeDef *USARTx)
{
return (uint32_t)(READ_BIT(USARTx->GTPR, USART_GTPR_PSC));
}
/**
* @brief Set Smartcard Guard time value, expressed in nb of baud clocks periods
* (GT[7:0] bits : Guard time value)
* @note Macro @ref IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
* Smartcard feature is supported by the USARTx instance.
* @rmtoll GTPR GT LL_USART_SetSmartcardGuardTime
* @param USARTx USART Instance
* @param GuardTime Value between Min_Data=0x00 and Max_Data=0xFF
* @retval None
*/
__STATIC_INLINE void LL_USART_SetSmartcardGuardTime(USART_TypeDef *USARTx, uint32_t GuardTime)
{
MODIFY_REG(USARTx->GTPR, USART_GTPR_GT, GuardTime << USART_POSITION_GTPR_GT);
}
/**
* @brief Return Smartcard Guard time value, expressed in nb of baud clocks periods
* (GT[7:0] bits : Guard time value)
* @note Macro @ref IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
* Smartcard feature is supported by the USARTx instance.
* @rmtoll GTPR GT LL_USART_GetSmartcardGuardTime
* @param USARTx USART Instance
* @retval Smartcard Guard time value (Value between Min_Data=0x00 and Max_Data=0xFF)
*/
__STATIC_INLINE uint32_t LL_USART_GetSmartcardGuardTime(USART_TypeDef *USARTx)
{
return (uint32_t)(READ_BIT(USARTx->GTPR, USART_GTPR_GT) >> USART_POSITION_GTPR_GT);
}
/**
* @}
*/
/** @defgroup USART_LL_EF_Configuration_HalfDuplex Configuration functions related to Half Duplex feature
* @{
*/
/**
* @brief Enable Single Wire Half-Duplex mode
* @note Macro @ref IS_UART_HALFDUPLEX_INSTANCE(USARTx) can be used to check whether or not
* Half-Duplex mode is supported by the USARTx instance.
* @rmtoll CR3 HDSEL LL_USART_EnableHalfDuplex
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_EnableHalfDuplex(USART_TypeDef *USARTx)
{
SET_BIT(USARTx->CR3, USART_CR3_HDSEL);
}
/**
* @brief Disable Single Wire Half-Duplex mode
* @note Macro @ref IS_UART_HALFDUPLEX_INSTANCE(USARTx) can be used to check whether or not
* Half-Duplex mode is supported by the USARTx instance.
* @rmtoll CR3 HDSEL LL_USART_DisableHalfDuplex
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_DisableHalfDuplex(USART_TypeDef *USARTx)
{
CLEAR_BIT(USARTx->CR3, USART_CR3_HDSEL);
}
/**
* @brief Indicate if Single Wire Half-Duplex mode is enabled
* @note Macro @ref IS_UART_HALFDUPLEX_INSTANCE(USARTx) can be used to check whether or not
* Half-Duplex mode is supported by the USARTx instance.
* @rmtoll CR3 HDSEL LL_USART_IsEnabledHalfDuplex
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsEnabledHalfDuplex(USART_TypeDef *USARTx)
{
return (READ_BIT(USARTx->CR3, USART_CR3_HDSEL) == (USART_CR3_HDSEL));
}
/**
* @}
*/
/** @defgroup USART_LL_EF_Configuration_LIN Configuration functions related to LIN feature
* @{
*/
/**
* @brief Set LIN Break Detection Length
* @note Macro @ref IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not
* LIN feature is supported by the USARTx instance.
* @rmtoll CR2 LBDL LL_USART_SetLINBrkDetectionLen
* @param USARTx USART Instance
* @param LINBDLength This parameter can be one of the following values:
* @arg @ref LL_USART_LINBREAK_DETECT_10B
* @arg @ref LL_USART_LINBREAK_DETECT_11B
* @retval None
*/
__STATIC_INLINE void LL_USART_SetLINBrkDetectionLen(USART_TypeDef *USARTx, uint32_t LINBDLength)
{
MODIFY_REG(USARTx->CR2, USART_CR2_LBDL, LINBDLength);
}
/**
* @brief Return LIN Break Detection Length
* @note Macro @ref IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not
* LIN feature is supported by the USARTx instance.
* @rmtoll CR2 LBDL LL_USART_GetLINBrkDetectionLen
* @param USARTx USART Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_USART_LINBREAK_DETECT_10B
* @arg @ref LL_USART_LINBREAK_DETECT_11B
*/
__STATIC_INLINE uint32_t LL_USART_GetLINBrkDetectionLen(USART_TypeDef *USARTx)
{
return (uint32_t)(READ_BIT(USARTx->CR2, USART_CR2_LBDL));
}
/**
* @brief Enable LIN mode
* @note Macro @ref IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not
* LIN feature is supported by the USARTx instance.
* @rmtoll CR2 LINEN LL_USART_EnableLIN
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_EnableLIN(USART_TypeDef *USARTx)
{
SET_BIT(USARTx->CR2, USART_CR2_LINEN);
}
/**
* @brief Disable LIN mode
* @note Macro @ref IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not
* LIN feature is supported by the USARTx instance.
* @rmtoll CR2 LINEN LL_USART_DisableLIN
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_DisableLIN(USART_TypeDef *USARTx)
{
CLEAR_BIT(USARTx->CR2, USART_CR2_LINEN);
}
/**
* @brief Indicate if LIN mode is enabled
* @note Macro @ref IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not
* LIN feature is supported by the USARTx instance.
* @rmtoll CR2 LINEN LL_USART_IsEnabledLIN
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsEnabledLIN(USART_TypeDef *USARTx)
{
return (READ_BIT(USARTx->CR2, USART_CR2_LINEN) == (USART_CR2_LINEN));
}
/**
* @}
*/
/** @defgroup USART_LL_EF_AdvancedConfiguration Advanced Configurations services
* @{
*/
/**
* @brief Perform basic configuration of USART for enabling use in Asynchronous Mode (UART)
* @note In UART mode, the following bits must be kept cleared:
* - LINEN bit in the USART_CR2 register,
* - CLKEN bit in the USART_CR2 register,
* - SCEN bit in the USART_CR3 register,
* - IREN bit in the USART_CR3 register,
* - HDSEL bit in the USART_CR3 register.
* @note Call of this function is equivalent to following function call sequence :
* - Clear LINEN in CR2 using @ref LL_USART_DisableLIN() function
* - Clear CLKEN in CR2 using @ref LL_USART_DisableSCLKOutput() function
* - Clear SCEN in CR3 using @ref LL_USART_DisableSmartcard() function
* - Clear IREN in CR3 using @ref LL_USART_DisableIrda() function
* - Clear HDSEL in CR3 using @ref LL_USART_DisableHalfDuplex() function
* @note Other remaining configurations items related to Asynchronous Mode
* (as Baud Rate, Word length, Parity, ...) should be set using
* dedicated functions
* @rmtoll CR2 LINEN LL_USART_ConfigAsyncMode\n
* CR2 CLKEN LL_USART_ConfigAsyncMode\n
* CR3 SCEN LL_USART_ConfigAsyncMode\n
* CR3 IREN LL_USART_ConfigAsyncMode\n
* CR3 HDSEL LL_USART_ConfigAsyncMode
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_ConfigAsyncMode(USART_TypeDef *USARTx)
{
/* In Asynchronous mode, the following bits must be kept cleared:
- LINEN, CLKEN bits in the USART_CR2 register,
- SCEN, IREN and HDSEL bits in the USART_CR3 register.*/
CLEAR_BIT(USARTx->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN));
CLEAR_BIT(USARTx->CR3, (USART_CR3_SCEN | USART_CR3_IREN | USART_CR3_HDSEL));
}
/**
* @brief Perform basic configuration of USART for enabling use in Synchronous Mode
* @note In Synchronous mode, the following bits must be kept cleared:
* - LINEN bit in the USART_CR2 register,
* - SCEN bit in the USART_CR3 register,
* - IREN bit in the USART_CR3 register,
* - HDSEL bit in the USART_CR3 register.
* This function also sets the USART in Synchronous mode.
* @note Macro @ref IS_USART_INSTANCE(USARTx) can be used to check whether or not
* Synchronous mode is supported by the USARTx instance.
* @note Call of this function is equivalent to following function call sequence :
* - Clear LINEN in CR2 using @ref LL_USART_DisableLIN() function
* - Clear IREN in CR3 using @ref LL_USART_DisableIrda() function
* - Clear SCEN in CR3 using @ref LL_USART_DisableSmartcard() function
* - Clear HDSEL in CR3 using @ref LL_USART_DisableHalfDuplex() function
* - Set CLKEN in CR2 using @ref LL_USART_EnableSCLKOutput() function
* @note Other remaining configurations items related to Synchronous Mode
* (as Baud Rate, Word length, Parity, Clock Polarity, ...) should be set using
* dedicated functions
* @rmtoll CR2 LINEN LL_USART_ConfigSyncMode\n
* CR2 CLKEN LL_USART_ConfigSyncMode\n
* CR3 SCEN LL_USART_ConfigSyncMode\n
* CR3 IREN LL_USART_ConfigSyncMode\n
* CR3 HDSEL LL_USART_ConfigSyncMode
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_ConfigSyncMode(USART_TypeDef *USARTx)
{
/* In Synchronous mode, the following bits must be kept cleared:
- LINEN bit in the USART_CR2 register,
- SCEN, IREN and HDSEL bits in the USART_CR3 register.*/
CLEAR_BIT(USARTx->CR2, (USART_CR2_LINEN));
CLEAR_BIT(USARTx->CR3, (USART_CR3_SCEN | USART_CR3_IREN | USART_CR3_HDSEL));
/* set the UART/USART in Synchronous mode */
SET_BIT(USARTx->CR2, USART_CR2_CLKEN);
}
/**
* @brief Perform basic configuration of USART for enabling use in LIN Mode
* @note In LIN mode, the following bits must be kept cleared:
* - STOP and CLKEN bits in the USART_CR2 register,
* - SCEN bit in the USART_CR3 register,
* - IREN bit in the USART_CR3 register,
* - HDSEL bit in the USART_CR3 register.
* This function also set the UART/USART in LIN mode.
* @note Macro @ref IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not
* LIN feature is supported by the USARTx instance.
* @note Call of this function is equivalent to following function call sequence :
* - Clear CLKEN in CR2 using @ref LL_USART_DisableSCLKOutput() function
* - Clear STOP in CR2 using @ref LL_USART_SetStopBitsLength() function
* - Clear SCEN in CR3 using @ref LL_USART_DisableSmartcard() function
* - Clear IREN in CR3 using @ref LL_USART_DisableIrda() function
* - Clear HDSEL in CR3 using @ref LL_USART_DisableHalfDuplex() function
* - Set LINEN in CR2 using @ref LL_USART_EnableLIN() function
* @note Other remaining configurations items related to LIN Mode
* (as Baud Rate, Word length, LIN Break Detection Length, ...) should be set using
* dedicated functions
* @rmtoll CR2 CLKEN LL_USART_ConfigLINMode\n
* CR2 STOP LL_USART_ConfigLINMode\n
* CR2 LINEN LL_USART_ConfigLINMode\n
* CR3 IREN LL_USART_ConfigLINMode\n
* CR3 SCEN LL_USART_ConfigLINMode\n
* CR3 HDSEL LL_USART_ConfigLINMode
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_ConfigLINMode(USART_TypeDef *USARTx)
{
/* In LIN mode, the following bits must be kept cleared:
- STOP and CLKEN bits in the USART_CR2 register,
- IREN, SCEN and HDSEL bits in the USART_CR3 register.*/
CLEAR_BIT(USARTx->CR2, (USART_CR2_CLKEN | USART_CR2_STOP));
CLEAR_BIT(USARTx->CR3, (USART_CR3_IREN | USART_CR3_SCEN | USART_CR3_HDSEL));
/* Set the UART/USART in LIN mode */
SET_BIT(USARTx->CR2, USART_CR2_LINEN);
}
/**
* @brief Perform basic configuration of USART for enabling use in Half Duplex Mode
* @note In Half Duplex mode, the following bits must be kept cleared:
* - LINEN bit in the USART_CR2 register,
* - CLKEN bit in the USART_CR2 register,
* - SCEN bit in the USART_CR3 register,
* - IREN bit in the USART_CR3 register,
* This function also sets the UART/USART in Half Duplex mode.
* @note Macro @ref IS_UART_HALFDUPLEX_INSTANCE(USARTx) can be used to check whether or not
* Half-Duplex mode is supported by the USARTx instance.
* @note Call of this function is equivalent to following function call sequence :
* - Clear LINEN in CR2 using @ref LL_USART_DisableLIN() function
* - Clear CLKEN in CR2 using @ref LL_USART_DisableSCLKOutput() function
* - Clear SCEN in CR3 using @ref LL_USART_DisableSmartcard() function
* - Clear IREN in CR3 using @ref LL_USART_DisableIrda() function
* - Set HDSEL in CR3 using @ref LL_USART_EnableHalfDuplex() function
* @note Other remaining configurations items related to Half Duplex Mode
* (as Baud Rate, Word length, Parity, ...) should be set using
* dedicated functions
* @rmtoll CR2 LINEN LL_USART_ConfigHalfDuplexMode\n
* CR2 CLKEN LL_USART_ConfigHalfDuplexMode\n
* CR3 HDSEL LL_USART_ConfigHalfDuplexMode\n
* CR3 SCEN LL_USART_ConfigHalfDuplexMode\n
* CR3 IREN LL_USART_ConfigHalfDuplexMode
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_ConfigHalfDuplexMode(USART_TypeDef *USARTx)
{
/* In Half Duplex mode, the following bits must be kept cleared:
- LINEN and CLKEN bits in the USART_CR2 register,
- SCEN and IREN bits in the USART_CR3 register.*/
CLEAR_BIT(USARTx->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN));
CLEAR_BIT(USARTx->CR3, (USART_CR3_SCEN | USART_CR3_IREN));
/* set the UART/USART in Half Duplex mode */
SET_BIT(USARTx->CR3, USART_CR3_HDSEL);
}
/**
* @brief Perform basic configuration of USART for enabling use in Smartcard Mode
* @note In Smartcard mode, the following bits must be kept cleared:
* - LINEN bit in the USART_CR2 register,
* - IREN bit in the USART_CR3 register,
* - HDSEL bit in the USART_CR3 register.
* This function also configures Stop bits to 1.5 bits and
* sets the USART in Smartcard mode (SCEN bit).
* Clock Output is also enabled (CLKEN).
* @note Macro @ref IS_SMARTCARD_INSTANCE(USARTx) can be used to check whether or not
* Smartcard feature is supported by the USARTx instance.
* @note Call of this function is equivalent to following function call sequence :
* - Clear LINEN in CR2 using @ref LL_USART_DisableLIN() function
* - Clear IREN in CR3 using @ref LL_USART_DisableIrda() function
* - Clear HDSEL in CR3 using @ref LL_USART_DisableHalfDuplex() function
* - Configure STOP in CR2 using @ref LL_USART_SetStopBitsLength() function
* - Set CLKEN in CR2 using @ref LL_USART_EnableSCLKOutput() function
* - Set SCEN in CR3 using @ref LL_USART_EnableSmartcard() function
* @note Other remaining configurations items related to Smartcard Mode
* (as Baud Rate, Word length, Parity, ...) should be set using
* dedicated functions
* @rmtoll CR2 LINEN LL_USART_ConfigSmartcardMode\n
* CR2 STOP LL_USART_ConfigSmartcardMode\n
* CR2 CLKEN LL_USART_ConfigSmartcardMode\n
* CR3 HDSEL LL_USART_ConfigSmartcardMode\n
* CR3 SCEN LL_USART_ConfigSmartcardMode
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_ConfigSmartcardMode(USART_TypeDef *USARTx)
{
/* In Smartcard mode, the following bits must be kept cleared:
- LINEN bit in the USART_CR2 register,
- IREN and HDSEL bits in the USART_CR3 register.*/
CLEAR_BIT(USARTx->CR2, (USART_CR2_LINEN));
CLEAR_BIT(USARTx->CR3, (USART_CR3_IREN | USART_CR3_HDSEL));
/* Configure Stop bits to 1.5 bits */
/* Synchronous mode is activated by default */
SET_BIT(USARTx->CR2, (USART_CR2_STOP_0 | USART_CR2_STOP_1 | USART_CR2_CLKEN));
/* set the UART/USART in Smartcard mode */
SET_BIT(USARTx->CR3, USART_CR3_SCEN);
}
/**
* @brief Perform basic configuration of USART for enabling use in Irda Mode
* @note In IRDA mode, the following bits must be kept cleared:
* - LINEN bit in the USART_CR2 register,
* - STOP and CLKEN bits in the USART_CR2 register,
* - SCEN bit in the USART_CR3 register,
* - HDSEL bit in the USART_CR3 register.
* This function also sets the UART/USART in IRDA mode (IREN bit).
* @note Macro @ref IS_IRDA_INSTANCE(USARTx) can be used to check whether or not
* IrDA feature is supported by the USARTx instance.
* @note Call of this function is equivalent to following function call sequence :
* - Clear LINEN in CR2 using @ref LL_USART_DisableLIN() function
* - Clear CLKEN in CR2 using @ref LL_USART_DisableSCLKOutput() function
* - Clear SCEN in CR3 using @ref LL_USART_DisableSmartcard() function
* - Clear HDSEL in CR3 using @ref LL_USART_DisableHalfDuplex() function
* - Configure STOP in CR2 using @ref LL_USART_SetStopBitsLength() function
* - Set IREN in CR3 using @ref LL_USART_EnableIrda() function
* @note Other remaining configurations items related to Irda Mode
* (as Baud Rate, Word length, Power mode, ...) should be set using
* dedicated functions
* @rmtoll CR2 LINEN LL_USART_ConfigIrdaMode\n
* CR2 CLKEN LL_USART_ConfigIrdaMode\n
* CR2 STOP LL_USART_ConfigIrdaMode\n
* CR3 SCEN LL_USART_ConfigIrdaMode\n
* CR3 HDSEL LL_USART_ConfigIrdaMode\n
* CR3 IREN LL_USART_ConfigIrdaMode
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_ConfigIrdaMode(USART_TypeDef *USARTx)
{
/* In IRDA mode, the following bits must be kept cleared:
- LINEN, STOP and CLKEN bits in the USART_CR2 register,
- SCEN and HDSEL bits in the USART_CR3 register.*/
CLEAR_BIT(USARTx->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN | USART_CR2_STOP));
CLEAR_BIT(USARTx->CR3, (USART_CR3_SCEN | USART_CR3_HDSEL));
/* set the UART/USART in IRDA mode */
SET_BIT(USARTx->CR3, USART_CR3_IREN);
}
/**
* @brief Perform basic configuration of USART for enabling use in Multi processor Mode
* (several USARTs connected in a network, one of the USARTs can be the master,
* its TX output connected to the RX inputs of the other slaves USARTs).
* @note In MultiProcessor mode, the following bits must be kept cleared:
* - LINEN bit in the USART_CR2 register,
* - CLKEN bit in the USART_CR2 register,
* - SCEN bit in the USART_CR3 register,
* - IREN bit in the USART_CR3 register,
* - HDSEL bit in the USART_CR3 register.
* @note Call of this function is equivalent to following function call sequence :
* - Clear LINEN in CR2 using @ref LL_USART_DisableLIN() function
* - Clear CLKEN in CR2 using @ref LL_USART_DisableSCLKOutput() function
* - Clear SCEN in CR3 using @ref LL_USART_DisableSmartcard() function
* - Clear IREN in CR3 using @ref LL_USART_DisableIrda() function
* - Clear HDSEL in CR3 using @ref LL_USART_DisableHalfDuplex() function
* @note Other remaining configurations items related to Multi processor Mode
* (as Baud Rate, Wake Up Method, Node address, ...) should be set using
* dedicated functions
* @rmtoll CR2 LINEN LL_USART_ConfigMultiProcessMode\n
* CR2 CLKEN LL_USART_ConfigMultiProcessMode\n
* CR3 SCEN LL_USART_ConfigMultiProcessMode\n
* CR3 HDSEL LL_USART_ConfigMultiProcessMode\n
* CR3 IREN LL_USART_ConfigMultiProcessMode
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_ConfigMultiProcessMode(USART_TypeDef *USARTx)
{
/* In Multi Processor mode, the following bits must be kept cleared:
- LINEN and CLKEN bits in the USART_CR2 register,
- IREN, SCEN and HDSEL bits in the USART_CR3 register.*/
CLEAR_BIT(USARTx->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN));
CLEAR_BIT(USARTx->CR3, (USART_CR3_SCEN | USART_CR3_HDSEL | USART_CR3_IREN));
}
/**
* @}
*/
/** @defgroup USART_LL_EF_FLAG_Management FLAG_Management
* @{
*/
/**
* @brief Check if the USART Parity Error Flag is set or not
* @rmtoll SR PE LL_USART_IsActiveFlag_PE
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsActiveFlag_PE(USART_TypeDef *USARTx)
{
return (READ_BIT(USARTx->SR, USART_SR_PE) == (USART_SR_PE));
}
/**
* @brief Check if the USART Framing Error Flag is set or not
* @rmtoll SR FE LL_USART_IsActiveFlag_FE
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsActiveFlag_FE(USART_TypeDef *USARTx)
{
return (READ_BIT(USARTx->SR, USART_SR_FE) == (USART_SR_FE));
}
/**
* @brief Check if the USART Noise error detected Flag is set or not
* @rmtoll SR NF LL_USART_IsActiveFlag_NE
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsActiveFlag_NE(USART_TypeDef *USARTx)
{
return (READ_BIT(USARTx->SR, USART_SR_NE) == (USART_SR_NE));
}
/**
* @brief Check if the USART OverRun Error Flag is set or not
* @rmtoll SR ORE LL_USART_IsActiveFlag_ORE
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsActiveFlag_ORE(USART_TypeDef *USARTx)
{
return (READ_BIT(USARTx->SR, USART_SR_ORE) == (USART_SR_ORE));
}
/**
* @brief Check if the USART IDLE line detected Flag is set or not
* @rmtoll SR IDLE LL_USART_IsActiveFlag_IDLE
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsActiveFlag_IDLE(USART_TypeDef *USARTx)
{
return (READ_BIT(USARTx->SR, USART_SR_IDLE) == (USART_SR_IDLE));
}
/**
* @brief Check if the USART Read Data Register Not Empty Flag is set or not
* @rmtoll SR RXNE LL_USART_IsActiveFlag_RXNE
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsActiveFlag_RXNE(USART_TypeDef *USARTx)
{
return (READ_BIT(USARTx->SR, USART_SR_RXNE) == (USART_SR_RXNE));
}
/**
* @brief Check if the USART Transmission Complete Flag is set or not
* @rmtoll SR TC LL_USART_IsActiveFlag_TC
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsActiveFlag_TC(USART_TypeDef *USARTx)
{
return (READ_BIT(USARTx->SR, USART_SR_TC) == (USART_SR_TC));
}
/**
* @brief Check if the USART Transmit Data Register Empty Flag is set or not
* @rmtoll SR TXE LL_USART_IsActiveFlag_TXE
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsActiveFlag_TXE(USART_TypeDef *USARTx)
{
return (READ_BIT(USARTx->SR, USART_SR_TXE) == (USART_SR_TXE));
}
/**
* @brief Check if the USART LIN Break Detection Flag is set or not
* @note Macro @ref IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not
* LIN feature is supported by the USARTx instance.
* @rmtoll SR LBD LL_USART_IsActiveFlag_LBD
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsActiveFlag_LBD(USART_TypeDef *USARTx)
{
return (READ_BIT(USARTx->SR, USART_SR_LBD) == (USART_SR_LBD));
}
/**
* @brief Check if the USART CTS Flag is set or not
* @note Macro @ref IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not
* Hardware Flow control feature is supported by the USARTx instance.
* @rmtoll SR CTS LL_USART_IsActiveFlag_nCTS
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsActiveFlag_nCTS(USART_TypeDef *USARTx)
{
return (READ_BIT(USARTx->SR, USART_SR_CTS) == (USART_SR_CTS));
}
/**
* @brief Check if the USART Send Break Flag is set or not
* @rmtoll CR1 SBK LL_USART_IsActiveFlag_SBK
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsActiveFlag_SBK(USART_TypeDef *USARTx)
{
return (READ_BIT(USARTx->CR1, USART_CR1_SBK) == (USART_CR1_SBK));
}
/**
* @brief Check if the USART Receive Wake Up from mute mode Flag is set or not
* @rmtoll CR1 RWU LL_USART_IsActiveFlag_RWU
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsActiveFlag_RWU(USART_TypeDef *USARTx)
{
return (READ_BIT(USARTx->CR1, USART_CR1_RWU) == (USART_CR1_RWU));
}
/**
* @brief Clear Parity Error Flag
* @note Clearing this flag is done by a read access to the USARTx_SR
* register followed by a read access to the USARTx_DR register.
* @note Please also consider that when clearing this flag, other flags as
* NE, FE, ORE, IDLE would also be cleared.
* @rmtoll SR PE LL_USART_ClearFlag_PE
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_ClearFlag_PE(USART_TypeDef *USARTx)
{
__IO uint32_t tmpreg;
tmpreg = USARTx->SR;
(void) tmpreg;
tmpreg = USARTx->DR;
(void) tmpreg;
}
/**
* @brief Clear Framing Error Flag
* @note Clearing this flag is done by a read access to the USARTx_SR
* register followed by a read access to the USARTx_DR register.
* @note Please also consider that when clearing this flag, other flags as
* PE, NE, ORE, IDLE would also be cleared.
* @rmtoll SR FE LL_USART_ClearFlag_FE
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_ClearFlag_FE(USART_TypeDef *USARTx)
{
__IO uint32_t tmpreg;
tmpreg = USARTx->SR;
(void) tmpreg;
tmpreg = USARTx->DR;
(void) tmpreg;
}
/**
* @brief Clear Noise detected Flag
* @note Clearing this flag is done by a read access to the USARTx_SR
* register followed by a read access to the USARTx_DR register.
* @note Please also consider that when clearing this flag, other flags as
* PE, FE, ORE, IDLE would also be cleared.
* @rmtoll SR NF LL_USART_ClearFlag_NE
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_ClearFlag_NE(USART_TypeDef *USARTx)
{
__IO uint32_t tmpreg;
tmpreg = USARTx->SR;
(void) tmpreg;
tmpreg = USARTx->DR;
(void) tmpreg;
}
/**
* @brief Clear OverRun Error Flag
* @note Clearing this flag is done by a read access to the USARTx_SR
* register followed by a read access to the USARTx_DR register.
* @note Please also consider that when clearing this flag, other flags as
* PE, NE, FE, IDLE would also be cleared.
* @rmtoll SR ORE LL_USART_ClearFlag_ORE
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_ClearFlag_ORE(USART_TypeDef *USARTx)
{
__IO uint32_t tmpreg;
tmpreg = USARTx->SR;
(void) tmpreg;
tmpreg = USARTx->DR;
(void) tmpreg;
}
/**
* @brief Clear IDLE line detected Flag
* @note Clearing this flag is done by a read access to the USARTx_SR
* register followed by a read access to the USARTx_DR register.
* @note Please also consider that when clearing this flag, other flags as
* PE, NE, FE, ORE would also be cleared.
* @rmtoll SR IDLE LL_USART_ClearFlag_IDLE
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_ClearFlag_IDLE(USART_TypeDef *USARTx)
{
__IO uint32_t tmpreg;
tmpreg = USARTx->SR;
(void) tmpreg;
tmpreg = USARTx->DR;
(void) tmpreg;
}
/**
* @brief Clear Transmission Complete Flag
* @rmtoll SR TC LL_USART_ClearFlag_TC
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_ClearFlag_TC(USART_TypeDef *USARTx)
{
WRITE_REG(USARTx->SR, ~(USART_SR_TC));
}
/**
* @brief Clear RX Not Empty Flag
* @rmtoll SR RXNE LL_USART_ClearFlag_RXNE
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_ClearFlag_RXNE(USART_TypeDef *USARTx)
{
WRITE_REG(USARTx->SR, ~(USART_SR_RXNE));
}
/**
* @brief Clear LIN Break Detection Flag
* @note Macro @ref IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not
* LIN feature is supported by the USARTx instance.
* @rmtoll SR LBD LL_USART_ClearFlag_LBD
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_ClearFlag_LBD(USART_TypeDef *USARTx)
{
WRITE_REG(USARTx->SR, ~(USART_SR_LBD));
}
/**
* @brief Clear CTS Interrupt Flag
* @note Macro @ref IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not
* Hardware Flow control feature is supported by the USARTx instance.
* @rmtoll SR CTS LL_USART_ClearFlag_nCTS
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_ClearFlag_nCTS(USART_TypeDef *USARTx)
{
WRITE_REG(USARTx->SR, ~(USART_SR_CTS));
}
/**
* @}
*/
/** @defgroup USART_LL_EF_IT_Management IT_Management
* @{
*/
/**
* @brief Enable IDLE Interrupt
* @rmtoll CR1 IDLEIE LL_USART_EnableIT_IDLE
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_EnableIT_IDLE(USART_TypeDef *USARTx)
{
SET_BIT(USARTx->CR1, USART_CR1_IDLEIE);
}
/**
* @brief Enable RX Not Empty Interrupt
* @rmtoll CR1 RXNEIE LL_USART_EnableIT_RXNE
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_EnableIT_RXNE(USART_TypeDef *USARTx)
{
SET_BIT(USARTx->CR1, USART_CR1_RXNEIE);
}
/**
* @brief Enable Transmission Complete Interrupt
* @rmtoll CR1 TCIE LL_USART_EnableIT_TC
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_EnableIT_TC(USART_TypeDef *USARTx)
{
SET_BIT(USARTx->CR1, USART_CR1_TCIE);
}
/**
* @brief Enable TX Empty Interrupt
* @rmtoll CR1 TXEIE LL_USART_EnableIT_TXE
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_EnableIT_TXE(USART_TypeDef *USARTx)
{
SET_BIT(USARTx->CR1, USART_CR1_TXEIE);
}
/**
* @brief Enable Parity Error Interrupt
* @rmtoll CR1 PEIE LL_USART_EnableIT_PE
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_EnableIT_PE(USART_TypeDef *USARTx)
{
SET_BIT(USARTx->CR1, USART_CR1_PEIE);
}
/**
* @brief Enable LIN Break Detection Interrupt
* @note Macro @ref IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not
* LIN feature is supported by the USARTx instance.
* @rmtoll CR2 LBDIE LL_USART_EnableIT_LBD
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_EnableIT_LBD(USART_TypeDef *USARTx)
{
SET_BIT(USARTx->CR2, USART_CR2_LBDIE);
}
/**
* @brief Enable Error Interrupt
* @note When set, Error Interrupt Enable Bit is enabling interrupt generation in case of a framing
* error, overrun error or noise flag (FE=1 or ORE=1 or NF=1 in the USARTx_SR register).
* 0: Interrupt is inhibited
* 1: An interrupt is generated when FE=1 or ORE=1 or NF=1 in the USARTx_SR register.
* @rmtoll CR3 EIE LL_USART_EnableIT_ERROR
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_EnableIT_ERROR(USART_TypeDef *USARTx)
{
SET_BIT(USARTx->CR3, USART_CR3_EIE);
}
/**
* @brief Enable CTS Interrupt
* @note Macro @ref IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not
* Hardware Flow control feature is supported by the USARTx instance.
* @rmtoll CR3 CTSIE LL_USART_EnableIT_CTS
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_EnableIT_CTS(USART_TypeDef *USARTx)
{
SET_BIT(USARTx->CR3, USART_CR3_CTSIE);
}
/**
* @brief Disable IDLE Interrupt
* @rmtoll CR1 IDLEIE LL_USART_DisableIT_IDLE
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_DisableIT_IDLE(USART_TypeDef *USARTx)
{
CLEAR_BIT(USARTx->CR1, USART_CR1_IDLEIE);
}
/**
* @brief Disable RX Not Empty Interrupt
* @rmtoll CR1 RXNEIE LL_USART_DisableIT_RXNE
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_DisableIT_RXNE(USART_TypeDef *USARTx)
{
CLEAR_BIT(USARTx->CR1, USART_CR1_RXNEIE);
}
/**
* @brief Disable Transmission Complete Interrupt
* @rmtoll CR1 TCIE LL_USART_DisableIT_TC
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_DisableIT_TC(USART_TypeDef *USARTx)
{
CLEAR_BIT(USARTx->CR1, USART_CR1_TCIE);
}
/**
* @brief Disable TX Empty Interrupt
* @rmtoll CR1 TXEIE LL_USART_DisableIT_TXE
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_DisableIT_TXE(USART_TypeDef *USARTx)
{
CLEAR_BIT(USARTx->CR1, USART_CR1_TXEIE);
}
/**
* @brief Disable Parity Error Interrupt
* @rmtoll CR1 PEIE LL_USART_DisableIT_PE
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_DisableIT_PE(USART_TypeDef *USARTx)
{
CLEAR_BIT(USARTx->CR1, USART_CR1_PEIE);
}
/**
* @brief Disable LIN Break Detection Interrupt
* @note Macro @ref IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not
* LIN feature is supported by the USARTx instance.
* @rmtoll CR2 LBDIE LL_USART_DisableIT_LBD
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_DisableIT_LBD(USART_TypeDef *USARTx)
{
CLEAR_BIT(USARTx->CR2, USART_CR2_LBDIE);
}
/**
* @brief Disable Error Interrupt
* @note When set, Error Interrupt Enable Bit is enabling interrupt generation in case of a framing
* error, overrun error or noise flag (FE=1 or ORE=1 or NF=1 in the USARTx_SR register).
* 0: Interrupt is inhibited
* 1: An interrupt is generated when FE=1 or ORE=1 or NF=1 in the USARTx_SR register.
* @rmtoll CR3 EIE LL_USART_DisableIT_ERROR
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_DisableIT_ERROR(USART_TypeDef *USARTx)
{
CLEAR_BIT(USARTx->CR3, USART_CR3_EIE);
}
/**
* @brief Disable CTS Interrupt
* @note Macro @ref IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not
* Hardware Flow control feature is supported by the USARTx instance.
* @rmtoll CR3 CTSIE LL_USART_DisableIT_CTS
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_DisableIT_CTS(USART_TypeDef *USARTx)
{
CLEAR_BIT(USARTx->CR3, USART_CR3_CTSIE);
}
/**
* @brief Check if the USART IDLE Interrupt source is enabled or disabled.
* @rmtoll CR1 IDLEIE LL_USART_IsEnabledIT_IDLE
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsEnabledIT_IDLE(USART_TypeDef *USARTx)
{
return (READ_BIT(USARTx->CR1, USART_CR1_IDLEIE) == (USART_CR1_IDLEIE));
}
/**
* @brief Check if the USART RX Not Empty Interrupt is enabled or disabled.
* @rmtoll CR1 RXNEIE LL_USART_IsEnabledIT_RXNE
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsEnabledIT_RXNE(USART_TypeDef *USARTx)
{
return (READ_BIT(USARTx->CR1, USART_CR1_RXNEIE) == (USART_CR1_RXNEIE));
}
/**
* @brief Check if the USART Transmission Complete Interrupt is enabled or disabled.
* @rmtoll CR1 TCIE LL_USART_IsEnabledIT_TC
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsEnabledIT_TC(USART_TypeDef *USARTx)
{
return (READ_BIT(USARTx->CR1, USART_CR1_TCIE) == (USART_CR1_TCIE));
}
/**
* @brief Check if the USART TX Empty Interrupt is enabled or disabled.
* @rmtoll CR1 TXEIE LL_USART_IsEnabledIT_TXE
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsEnabledIT_TXE(USART_TypeDef *USARTx)
{
return (READ_BIT(USARTx->CR1, USART_CR1_TXEIE) == (USART_CR1_TXEIE));
}
/**
* @brief Check if the USART Parity Error Interrupt is enabled or disabled.
* @rmtoll CR1 PEIE LL_USART_IsEnabledIT_PE
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsEnabledIT_PE(USART_TypeDef *USARTx)
{
return (READ_BIT(USARTx->CR1, USART_CR1_PEIE) == (USART_CR1_PEIE));
}
/**
* @brief Check if the USART LIN Break Detection Interrupt is enabled or disabled.
* @note Macro @ref IS_UART_LIN_INSTANCE(USARTx) can be used to check whether or not
* LIN feature is supported by the USARTx instance.
* @rmtoll CR2 LBDIE LL_USART_IsEnabledIT_LBD
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsEnabledIT_LBD(USART_TypeDef *USARTx)
{
return (READ_BIT(USARTx->CR2, USART_CR2_LBDIE) == (USART_CR2_LBDIE));
}
/**
* @brief Check if the USART Error Interrupt is enabled or disabled.
* @rmtoll CR3 EIE LL_USART_IsEnabledIT_ERROR
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsEnabledIT_ERROR(USART_TypeDef *USARTx)
{
return (READ_BIT(USARTx->CR3, USART_CR3_EIE) == (USART_CR3_EIE));
}
/**
* @brief Check if the USART CTS Interrupt is enabled or disabled.
* @note Macro @ref IS_UART_HWFLOW_INSTANCE(USARTx) can be used to check whether or not
* Hardware Flow control feature is supported by the USARTx instance.
* @rmtoll CR3 CTSIE LL_USART_IsEnabledIT_CTS
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsEnabledIT_CTS(USART_TypeDef *USARTx)
{
return (READ_BIT(USARTx->CR3, USART_CR3_CTSIE) == (USART_CR3_CTSIE));
}
/**
* @}
*/
/** @defgroup USART_LL_EF_DMA_Management DMA_Management
* @{
*/
/**
* @brief Enable DMA Mode for reception
* @rmtoll CR3 DMAR LL_USART_EnableDMAReq_RX
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_EnableDMAReq_RX(USART_TypeDef *USARTx)
{
SET_BIT(USARTx->CR3, USART_CR3_DMAR);
}
/**
* @brief Disable DMA Mode for reception
* @rmtoll CR3 DMAR LL_USART_DisableDMAReq_RX
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_DisableDMAReq_RX(USART_TypeDef *USARTx)
{
CLEAR_BIT(USARTx->CR3, USART_CR3_DMAR);
}
/**
* @brief Check if DMA Mode is enabled for reception
* @rmtoll CR3 DMAR LL_USART_IsEnabledDMAReq_RX
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsEnabledDMAReq_RX(USART_TypeDef *USARTx)
{
return (READ_BIT(USARTx->CR3, USART_CR3_DMAR) == (USART_CR3_DMAR));
}
/**
* @brief Enable DMA Mode for transmission
* @rmtoll CR3 DMAT LL_USART_EnableDMAReq_TX
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_EnableDMAReq_TX(USART_TypeDef *USARTx)
{
SET_BIT(USARTx->CR3, USART_CR3_DMAT);
}
/**
* @brief Disable DMA Mode for transmission
* @rmtoll CR3 DMAT LL_USART_DisableDMAReq_TX
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_DisableDMAReq_TX(USART_TypeDef *USARTx)
{
CLEAR_BIT(USARTx->CR3, USART_CR3_DMAT);
}
/**
* @brief Check if DMA Mode is enabled for transmission
* @rmtoll CR3 DMAT LL_USART_IsEnabledDMAReq_TX
* @param USARTx USART Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_USART_IsEnabledDMAReq_TX(USART_TypeDef *USARTx)
{
return (READ_BIT(USARTx->CR3, USART_CR3_DMAT) == (USART_CR3_DMAT));
}
/**
* @brief Get the data register address used for DMA transfer
* @rmtoll DR DR LL_USART_DMA_GetRegAddr
* @note Address of Data Register is valid for both Transmit and Receive transfers.
* @param USARTx USART Instance
* @retval Address of data register
*/
__STATIC_INLINE uint32_t LL_USART_DMA_GetRegAddr(USART_TypeDef *USARTx)
{
/* return address of DR register */
return ((uint32_t) & (USARTx->DR));
}
/**
* @}
*/
/** @defgroup USART_LL_EF_Data_Management Data_Management
* @{
*/
/**
* @brief Read Receiver Data register (Receive Data value, 8 bits)
* @rmtoll DR DR LL_USART_ReceiveData8
* @param USARTx USART Instance
* @retval Value between Min_Data=0x00 and Max_Data=0xFF
*/
__STATIC_INLINE uint8_t LL_USART_ReceiveData8(USART_TypeDef *USARTx)
{
return (uint8_t)(READ_BIT(USARTx->DR, USART_DR_DR));
}
/**
* @brief Read Receiver Data register (Receive Data value, 9 bits)
* @rmtoll DR DR LL_USART_ReceiveData9
* @param USARTx USART Instance
* @retval Value between Min_Data=0x00 and Max_Data=0x1FF
*/
__STATIC_INLINE uint16_t LL_USART_ReceiveData9(USART_TypeDef *USARTx)
{
return (uint16_t)(READ_BIT(USARTx->DR, USART_DR_DR));
}
/**
* @brief Write in Transmitter Data Register (Transmit Data value, 8 bits)
* @rmtoll DR DR LL_USART_TransmitData8
* @param USARTx USART Instance
* @param Value between Min_Data=0x00 and Max_Data=0xFF
* @retval None
*/
__STATIC_INLINE void LL_USART_TransmitData8(USART_TypeDef *USARTx, uint8_t Value)
{
USARTx->DR = Value;
}
/**
* @brief Write in Transmitter Data Register (Transmit Data value, 9 bits)
* @rmtoll DR DR LL_USART_TransmitData9
* @param USARTx USART Instance
* @param Value between Min_Data=0x00 and Max_Data=0x1FF
* @retval None
*/
__STATIC_INLINE void LL_USART_TransmitData9(USART_TypeDef *USARTx, uint16_t Value)
{
USARTx->DR = Value & 0x1FFU;
}
/**
* @}
*/
/** @defgroup USART_LL_EF_Execution Execution
* @{
*/
/**
* @brief Request Break sending
* @rmtoll CR1 SBK LL_USART_RequestBreakSending
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_RequestBreakSending(USART_TypeDef *USARTx)
{
SET_BIT(USARTx->CR1, USART_CR1_SBK);
}
/**
* @brief Put USART in Mute mode
* @rmtoll CR1 RWU LL_USART_RequestEnterMuteMode
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_RequestEnterMuteMode(USART_TypeDef *USARTx)
{
SET_BIT(USARTx->CR1, USART_CR1_RWU);
}
/**
* @brief Put USART in Active mode
* @rmtoll CR1 RWU LL_USART_RequestExitMuteMode
* @param USARTx USART Instance
* @retval None
*/
__STATIC_INLINE void LL_USART_RequestExitMuteMode(USART_TypeDef *USARTx)
{
CLEAR_BIT(USARTx->CR1, USART_CR1_RWU);
}
/**
* @}
*/
#if defined(USE_FULL_LL_DRIVER)
/** @defgroup USART_LL_EF_Init Initialization and de-initialization functions
* @{
*/
ErrorStatus LL_USART_DeInit(USART_TypeDef *USARTx);
ErrorStatus LL_USART_Init(USART_TypeDef *USARTx, LL_USART_InitTypeDef *USART_InitStruct);
void LL_USART_StructInit(LL_USART_InitTypeDef *USART_InitStruct);
ErrorStatus LL_USART_ClockInit(USART_TypeDef *USARTx, LL_USART_ClockInitTypeDef *USART_ClockInitStruct);
void LL_USART_ClockStructInit(LL_USART_ClockInitTypeDef *USART_ClockInitStruct);
/**
* @}
*/
#endif /* USE_FULL_LL_DRIVER */
/**
* @}
*/
/**
* @}
*/
#endif /* USART1 || USART2 || USART3 || UART4 || UART5 */
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* __STM32F1xx_LL_USART_H */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/