/* * Copyright (c) 2006-2018, RT-Thread Development Team * * SPDX-License-Identifier: Apache-2.0 * * Change Logs: * Date Author Notes * 2019-01-31 flybreak first version * 2019-07-16 WillianChan Increase the output of sensor information * 2020-02-22 luhuadong Add vendor info and sensor types for cmd */ #include "sensor.h" #define DBG_TAG "sensor.cmd" #define DBG_LVL DBG_INFO #include #include #include static rt_sem_t sensor_rx_sem = RT_NULL; static void sensor_show_data(rt_size_t num, rt_sensor_t sensor, struct rt_sensor_data *sensor_data) { switch (sensor->info.type) { case RT_SENSOR_CLASS_ACCE: LOG_I("num:%3d, x:%5d, y:%5d, z:%5d mg, timestamp:%5d", num, sensor_data->data.acce.x, sensor_data->data.acce.y, sensor_data->data.acce.z, sensor_data->timestamp); break; case RT_SENSOR_CLASS_GYRO: LOG_I("num:%3d, x:%8d, y:%8d, z:%8d dps, timestamp:%5d", num, sensor_data->data.gyro.x / 1000, sensor_data->data.gyro.y / 1000, sensor_data->data.gyro.z / 1000, sensor_data->timestamp); break; case RT_SENSOR_CLASS_MAG: LOG_I("num:%3d, x:%5d, y:%5d, z:%5d mGauss, timestamp:%5d", num, sensor_data->data.mag.x, sensor_data->data.mag.y, sensor_data->data.mag.z, sensor_data->timestamp); break; case RT_SENSOR_CLASS_GNSS: LOG_I("num:%3d, lon:%5d, lat:%5d, timestamp:%5d", num, sensor_data->data.coord.longitude, sensor_data->data.coord.latitude, sensor_data->timestamp); break; case RT_SENSOR_CLASS_TEMP: LOG_I("num:%3d, temp:%3d.%d C, timestamp:%5d", num, sensor_data->data.temp / 10, (rt_uint32_t)sensor_data->data.temp % 10, sensor_data->timestamp); break; case RT_SENSOR_CLASS_HUMI: LOG_I("num:%3d, humi:%3d.%d%%, timestamp:%5d", num, sensor_data->data.humi / 10, sensor_data->data.humi % 10, sensor_data->timestamp); break; case RT_SENSOR_CLASS_BARO: LOG_I("num:%3d, press:%5d pa, timestamp:%5d", num, sensor_data->data.baro, sensor_data->timestamp); break; case RT_SENSOR_CLASS_LIGHT: LOG_I("num:%3d, light:%5d lux, timestamp:%5d", num, sensor_data->data.light, sensor_data->timestamp); break; case RT_SENSOR_CLASS_PROXIMITY: case RT_SENSOR_CLASS_TOF: LOG_I("num:%3d, distance:%5d, timestamp:%5d", num, sensor_data->data.proximity, sensor_data->timestamp); break; case RT_SENSOR_CLASS_HR: LOG_I("num:%3d, heart rate:%5d bpm, timestamp:%5d", num, sensor_data->data.hr, sensor_data->timestamp); break; case RT_SENSOR_CLASS_TVOC: LOG_I("num:%3d, tvoc:%5d ppb, timestamp:%5d", num, sensor_data->data.tvoc, sensor_data->timestamp); break; case RT_SENSOR_CLASS_NOISE: LOG_I("num:%3d, noise:%5d, timestamp:%5d", num, sensor_data->data.noise, sensor_data->timestamp); break; case RT_SENSOR_CLASS_STEP: LOG_I("num:%3d, step:%5d, timestamp:%5d", num, sensor_data->data.step, sensor_data->timestamp); break; case RT_SENSOR_CLASS_FORCE: LOG_I("num:%3d, force:%5d, timestamp:%5d", num, sensor_data->data.force, sensor_data->timestamp); break; case RT_SENSOR_CLASS_DUST: LOG_I("num:%3d, dust:%5d ug/m3, timestamp:%5d", num, sensor_data->data.dust, sensor_data->timestamp); break; case RT_SENSOR_CLASS_ECO2: LOG_I("num:%3d, eco2:%5d ppm, timestamp:%5d", num, sensor_data->data.eco2, sensor_data->timestamp); break; default: break; } } static rt_err_t rx_callback(rt_device_t dev, rt_size_t size) { rt_sem_release(sensor_rx_sem); return 0; } static void sensor_fifo_rx_entry(void *parameter) { rt_device_t dev = (rt_device_t)parameter; rt_sensor_t sensor = (rt_sensor_t)parameter; struct rt_sensor_data *data = RT_NULL; struct rt_sensor_info info; rt_size_t res, i; rt_device_control(dev, RT_SENSOR_CTRL_GET_INFO, &info); data = (struct rt_sensor_data *)rt_malloc(sizeof(struct rt_sensor_data) * info.fifo_max); if (data == RT_NULL) { LOG_E("Memory allocation failed!"); } while (1) { rt_sem_take(sensor_rx_sem, RT_WAITING_FOREVER); res = rt_device_read(dev, 0, data, info.fifo_max); for (i = 0; i < res; i++) { sensor_show_data(i, sensor, &data[i]); } } } static void sensor_fifo(int argc, char **argv) { static rt_thread_t tid1 = RT_NULL; rt_device_t dev = RT_NULL; rt_sensor_t sensor; dev = rt_device_find(argv[1]); if (dev == RT_NULL) { LOG_E("Can't find device:%s", argv[1]); return; } sensor = (rt_sensor_t)dev; if (rt_device_open(dev, RT_DEVICE_FLAG_FIFO_RX) != RT_EOK) { LOG_E("open device failed!"); return; } if (sensor_rx_sem == RT_NULL) { sensor_rx_sem = rt_sem_create("sen_rx_sem", 0, RT_IPC_FLAG_FIFO); } else { LOG_E("The thread is running, please reboot and try again"); return; } tid1 = rt_thread_create("sen_rx_thread", sensor_fifo_rx_entry, sensor, 1024, 15, 5); if (tid1 != RT_NULL) rt_thread_startup(tid1); rt_device_set_rx_indicate(dev, rx_callback); rt_device_control(dev, RT_SENSOR_CTRL_SET_ODR, (void *)20); } #ifdef FINSH_USING_MSH MSH_CMD_EXPORT(sensor_fifo, Sensor fifo mode test function); #endif static void sensor_irq_rx_entry(void *parameter) { rt_device_t dev = (rt_device_t)parameter; rt_sensor_t sensor = (rt_sensor_t)parameter; struct rt_sensor_data data; rt_size_t res, i = 0; while (1) { rt_sem_take(sensor_rx_sem, RT_WAITING_FOREVER); res = rt_device_read(dev, 0, &data, 1); if (res == 1) { sensor_show_data(i++, sensor, &data); } } } static void sensor_int(int argc, char **argv) { static rt_thread_t tid1 = RT_NULL; rt_device_t dev = RT_NULL; rt_sensor_t sensor; dev = rt_device_find(argv[1]); if (dev == RT_NULL) { LOG_E("Can't find device:%s", argv[1]); return; } sensor = (rt_sensor_t)dev; if (sensor_rx_sem == RT_NULL) { sensor_rx_sem = rt_sem_create("sen_rx_sem", 0, RT_IPC_FLAG_FIFO); } else { LOG_E("The thread is running, please reboot and try again"); return; } tid1 = rt_thread_create("sen_rx_thread", sensor_irq_rx_entry, sensor, 1024, 15, 5); if (tid1 != RT_NULL) rt_thread_startup(tid1); rt_device_set_rx_indicate(dev, rx_callback); if (rt_device_open(dev, RT_DEVICE_FLAG_INT_RX) != RT_EOK) { LOG_E("open device failed!"); return; } rt_device_control(dev, RT_SENSOR_CTRL_SET_ODR, (void *)20); } #ifdef FINSH_USING_MSH MSH_CMD_EXPORT(sensor_int, Sensor interrupt mode test function); #endif static void sensor_polling(int argc, char **argv) { uint16_t num = 10; rt_device_t dev = RT_NULL; rt_sensor_t sensor; struct rt_sensor_data data; rt_size_t res, i; rt_int32_t delay; dev = rt_device_find(argv[1]); if (dev == RT_NULL) { LOG_E("Can't find device:%s", argv[1]); return; } if (argc > 2) num = atoi(argv[2]); sensor = (rt_sensor_t)dev; delay = sensor->info.period_min > 100 ? sensor->info.period_min : 100; if (rt_device_open(dev, RT_DEVICE_FLAG_RDWR) != RT_EOK) { LOG_E("open device failed!"); return; } rt_device_control(dev, RT_SENSOR_CTRL_SET_ODR, (void *)100); for (i = 0; i < num; i++) { res = rt_device_read(dev, 0, &data, 1); if (res != 1) { LOG_E("read data failed!size is %d", res); } else { sensor_show_data(i, sensor, &data); } rt_thread_mdelay(delay); } rt_device_close(dev); } #ifdef FINSH_USING_MSH MSH_CMD_EXPORT(sensor_polling, Sensor polling mode test function); #endif static void sensor(int argc, char **argv) { static rt_device_t dev = RT_NULL; struct rt_sensor_data data; rt_sensor_t sensor; rt_size_t res, i; rt_int32_t delay; /* If the number of arguments less than 2 */ if (argc < 2) { rt_kprintf("\n"); rt_kprintf("sensor [OPTION] [PARAM]\n"); rt_kprintf(" probe Probe sensor by given name\n"); rt_kprintf(" info Get sensor info\n"); rt_kprintf(" sr Set range to var\n"); rt_kprintf(" sm Set work mode to var\n"); rt_kprintf(" sp Set power mode to var\n"); rt_kprintf(" sodr Set output date rate to var\n"); rt_kprintf(" read [num] Read [num] times sensor\n"); rt_kprintf(" num default 5\n"); return ; } else if (!strcmp(argv[1], "info")) { struct rt_sensor_info info; if (dev == RT_NULL) { LOG_W("Please probe sensor device first!"); return ; } rt_device_control(dev, RT_SENSOR_CTRL_GET_INFO, &info); switch (info.vendor) { case RT_SENSOR_VENDOR_UNKNOWN: rt_kprintf("vendor :unknown vendor\n"); break; case RT_SENSOR_VENDOR_STM: rt_kprintf("vendor :STMicroelectronics\n"); break; case RT_SENSOR_VENDOR_BOSCH: rt_kprintf("vendor :Bosch\n"); break; case RT_SENSOR_VENDOR_INVENSENSE: rt_kprintf("vendor :Invensense\n"); break; case RT_SENSOR_VENDOR_SEMTECH: rt_kprintf("vendor :Semtech\n"); break; case RT_SENSOR_VENDOR_GOERTEK: rt_kprintf("vendor :Goertek\n"); break; case RT_SENSOR_VENDOR_MIRAMEMS: rt_kprintf("vendor :MiraMEMS\n"); break; case RT_SENSOR_VENDOR_DALLAS: rt_kprintf("vendor :Dallas\n"); break; case RT_SENSOR_VENDOR_ASAIR: rt_kprintf("vendor :Asair\n"); break; case RT_SENSOR_VENDOR_SHARP: rt_kprintf("vendor :Sharp\n"); break; case RT_SENSOR_VENDOR_SENSIRION: rt_kprintf("vendor :Sensirion\n"); break; case RT_SENSOR_VENDOR_TI: rt_kprintf("vendor :Texas Instruments\n"); break; case RT_SENSOR_VENDOR_PLANTOWER: rt_kprintf("vendor :Plantower\n"); break; case RT_SENSOR_VENDOR_AMS: rt_kprintf("vendor :AMS\n"); break; case RT_SENSOR_VENDOR_MAXIM: rt_kprintf("vendor :Maxim Integrated\n"); break; } rt_kprintf("model :%s\n", info.model); switch (info.unit) { case RT_SENSOR_UNIT_NONE: rt_kprintf("unit :none\n"); break; case RT_SENSOR_UNIT_MG: rt_kprintf("unit :mG\n"); break; case RT_SENSOR_UNIT_MDPS: rt_kprintf("unit :mdps\n"); break; case RT_SENSOR_UNIT_MGAUSS: rt_kprintf("unit :mGauss\n"); break; case RT_SENSOR_UNIT_LUX: rt_kprintf("unit :lux\n"); break; case RT_SENSOR_UNIT_CM: rt_kprintf("unit :cm\n"); break; case RT_SENSOR_UNIT_PA: rt_kprintf("unit :pa\n"); break; case RT_SENSOR_UNIT_PERMILLAGE: rt_kprintf("unit :permillage\n"); break; case RT_SENSOR_UNIT_DCELSIUS: rt_kprintf("unit :Celsius\n"); break; case RT_SENSOR_UNIT_HZ: rt_kprintf("unit :HZ\n"); break; case RT_SENSOR_UNIT_ONE: rt_kprintf("unit :1\n"); break; case RT_SENSOR_UNIT_BPM: rt_kprintf("unit :bpm\n"); break; case RT_SENSOR_UNIT_MM: rt_kprintf("unit :mm\n"); break; case RT_SENSOR_UNIT_MN: rt_kprintf("unit :mN\n"); break; case RT_SENSOR_UNIT_PPM: rt_kprintf("unit :ppm\n"); break; case RT_SENSOR_UNIT_PPB: rt_kprintf("unit :ppb\n"); break; } rt_kprintf("range_max :%d\n", info.range_max); rt_kprintf("range_min :%d\n", info.range_min); rt_kprintf("period_min:%dms\n", info.period_min); rt_kprintf("fifo_max :%d\n", info.fifo_max); } else if (!strcmp(argv[1], "read")) { uint16_t num = 5; if (dev == RT_NULL) { LOG_W("Please probe sensor device first!"); return ; } if (argc == 3) { num = atoi(argv[2]); } sensor = (rt_sensor_t)dev; delay = sensor->info.period_min > 100 ? sensor->info.period_min : 100; for (i = 0; i < num; i++) { res = rt_device_read(dev, 0, &data, 1); if (res != 1) { LOG_E("read data failed!size is %d", res); } else { sensor_show_data(i, sensor, &data); } rt_thread_mdelay(delay); } } else if (argc == 3) { if (!strcmp(argv[1], "probe")) { rt_uint8_t reg = 0xFF; if (dev) { rt_device_close(dev); } dev = rt_device_find(argv[2]); if (dev == RT_NULL) { LOG_E("Can't find device:%s", argv[1]); return; } if (rt_device_open(dev, RT_DEVICE_FLAG_RDWR) != RT_EOK) { LOG_E("open device failed!"); return; } rt_device_control(dev, RT_SENSOR_CTRL_GET_ID, ®); LOG_I("device id: 0x%x!", reg); } else if (dev == RT_NULL) { LOG_W("Please probe sensor first!"); return ; } else if (!strcmp(argv[1], "sr")) { rt_device_control(dev, RT_SENSOR_CTRL_SET_RANGE, (void *)atoi(argv[2])); } else if (!strcmp(argv[1], "sm")) { rt_device_control(dev, RT_SENSOR_CTRL_SET_MODE, (void *)atoi(argv[2])); } else if (!strcmp(argv[1], "sp")) { rt_device_control(dev, RT_SENSOR_CTRL_SET_POWER, (void *)atoi(argv[2])); } else if (!strcmp(argv[1], "sodr")) { rt_device_control(dev, RT_SENSOR_CTRL_SET_ODR, (void *)atoi(argv[2])); } else { LOG_W("Unknown command, please enter 'sensor' get help information!"); } } else { LOG_W("Unknown command, please enter 'sensor' get help information!"); } } #ifdef FINSH_USING_MSH MSH_CMD_EXPORT(sensor, sensor test function); #endif